
Chapter 6

Numerical Examples

6.1 Sloshing in a Rectangular Tank

In this section we perform a study of sloshing in a three-dimensional tank subjected

to external excitation. The objective of this exercise is to assess the capabilities of

the space-time finite element formulation as a method of handling deforming domain

problems. The origins of the current problem can be traced to experiments by Muto

et al. [53]. Subsequently the problem has been used to evaluate the performance of

various deforming domain numerical methods, including ALE [10,11]. The continuing

interest in the problem stems from its many potential applications. A priori knowledge

of the movements of the fluid under given excitation is often needed to predict forces

acting on the structure supporting the fluid. This in turn enables us to e.g. estimate

dynamical behavior of a spacecraft due to the motion of the propellant.

6.1.1 Horizontal excitation

First we model a sloshing container subjected to horizontal excitation experimentally

examined in [53].

The problem is stated as follows:

• Water fills the initially rectangular W × H × D, (W = 0.8m, H = 0.1m and
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Figure 6.1. Horizontally oscillating tank: domain description.

D = 0.3m) domain as shown in Figure 6.1. In keeping with the previous

numerical simulations, boundaries Γbottom and Γside allow slip in the direction

tangent to the surface. It is hoped that this idealization will not significantly

affect the motion of a low-viscosity fluid. The boundary Γtop is left free, and

moves with the normal component of the fluid velocity at the surface. The

normal directions are computed using the consistent normal approach of [54].

• The external forces acting on the fluid consist of a constant gravitational ac-

celeration of magnitude g = 9.81ms−2 and of a sinusoidal horizontal excitation

Ag sin ωt with A = 0.01 and ω = 2πf, f = 0.89Hz.

• At each time level, the domain is discretized using a finite element mesh with

1,305 nodes and 800 brick trilinear elements. In the resulting space-time mesh,
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Dimensional Non-dimensional

Lengths D = 0.3m D̃ = 1.0

H = 0.1m H̃ = 0.3333

W = 0.8m W̃ = 2.6667

Frequency f = 0.89s−1 f̃ = 0.156

Acceleration g = 9.81ms−2 g̃ = 1.0

Viscosity ν = 1.0 × 10−6m2s−1 ν̃ = 1.943 × 10−6

Time step ∆t = 0.0187s ∆t̃ = 0.107

Table 6.1. Horizontally excited tank: parameters.

each time slab consisting of 2,610 nodes and 800 quadrilinear four-dimensional

brick elements.

• The problem is non-dimensionalized in a way described in [10]. The full set of

dimensional as well as non-dimensional parameters is summarized in Table 6.1.

• Computations in this section use a GMRES solver with diagonal scaling. Krylov

space size of 20 was chosen, and the maximum number of outer GMRES itera-

tions is set to 10. At each time step, an average of 3 non-linear iterations were

required to meet the convergence criterion. The simulations were done in 64-bit

precision on the CM-5 computer.

The sloshing motion is initiated as soon as the excitation is applied. The excitation

frequency is designed to induce the first mode of wave motion in the x direction, i.e.,

the motion with a wavelength approximately equal twice the width of the tank W .

This motion is indeed produced, and virtually no three-dimensional effects, nor any

higher wave motion modes, are visible. The time histories of the height of the wave at

the two opposite walls perpendicular to the x-axis are shown in Figures 6.2 and 6.3.

For the first ten periods of excitation the measured wave height is quite close to the one

reported in [10], with the difference not exceeding 4%. After the initial ten periods the
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excitation in [10] is removed, and the wave growth stops. In the current simulation we

continued the excitation, matching the experimental conditions reported in [53]. The

maximum upward wave deflection reaches more than double of the original height,

and the occurrence of second frequency is clearly visible in the wave height envelope.

That transient is decaying extremely slowly, as the damping in the system, provided

by the fluid viscosity, is very low. The results presented here do not extend to the

eventual quasi-steady state of periodic sloshing, but it may be extrapolated that the

final minimum and maximum vertical displacements of the fluid at the wall should

reach 1.6 and 0.75, respectively, of the undisturbed wave height. The quasi-steady

wave height for the excitation frequency of 0.89Hz measured in [53] is 1.53. The six

frames in Figure 6.4 show the deformed finite element mesh at equally spaced instant

within one period of oscillations. The amplitude of the sloshing at this point is close

to the expected quasi-steady state. The corresponding six frames in Figure 6.5 show

the velocity field at the plane of symmetry y = H/2.
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Figure 6.2. Horizontally excited tank: time history of the wave height at the x = 0

wall.
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Figure 6.3. Horizontally excited tank: time history of the wave height at the x = W

wall.
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Figure 6.4. Horizontally excited tank: finite element mesh at t = 314.77, 316.06 (top

row), t = 317.34, 318.63 (middle row), and t = 319.91, 321.20 (bottom row).
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Figure 6.5. Horizontally excited tank: velocity field at t = 314.77, 316.06 (top row),

t = 317.34, 318.63 (middle row), and t = 319.91, 321.20 (bottom row).
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6.1.2 Vertical excitation

In this truly three dimensional application, we subject a rectangular tank to a pe-

riodic vertical excitation. Experimental and theoretical evidence [55, 56] indicates

the existence of multiple solution branches when the horizontal cross-section of the

tank is nearly square. Depending on the excitation frequency, the competing wave

modes interact generating complex periodic, as well as chaotic, wave behavior. The

particular case considered here is based on the experiment performed by Feng and

Sethna [56]. The problem under consideration is:

• The geometry of this problem is similar to the one described in the last sub-

section. The dimensions of the tank are now W = 0.1778m (7 in), H =

0.18034m (7.1 in) and D = 0.127m (5 in). Boundary conditions and surface

normal determination remain unchanged.

• In addition to the gravitational acceleration of magnitude g = 9.81ms−2 acting

downward, the tank is subjected to a sinusoidal vertical excitation Ag sin ωt

with ω = 2πf, f = 4.00Hz and A such that the amplitude of the oscillations

remains at 1mm.

• At each time level, the domain is discretized using 7,066 nodes and 6,000 brick

trilinear elements. The space-time mesh for each time slab consists of 14,112

nodes and 6,000 quadrilinear four-dimensional brick elements.

• As it is done in the previous case, the problem is non-dimensionalized. Dimen-

sional scales are chosen so that the x-dimension length and vertical acceleration

become unity. Table 6.2 summarizes the parameters used in this problem.

• As in previous case, a GMRES solver with diagonal scaling was used. Krylov

space size was 40 was chosen, and maximum number of outer GMRES iterations

was 5 initially, and 10 for larger fluid motions. At each time step, an average

of 3 non-linear iterations were needed. The simulations were done in 64-bit

precision on the CM-200 computer.
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Dimensional Non-dimensional

Lengths D = 0.127m D̃ = 0.714

H = 0.18034m H̃ = 1.0143

W = 0.1778m W̃ = 1.0

Frequency f = 4.00s−1 f̃ = 0.5386

Acceleration g = 9.81ms−2 g̃ = 1.0

Viscosity ν = 1.0 × 10−6m2s−1 ν̃ = 4.259 × 10−6

Time step ∆t = 0.0125s ∆t̃ = 0.093

Table 6.2. Vertically excited tank: parameters.

The computations start with a perturbed solution which has been obtained by

running the simulation for 20 time steps (one excitation period), with an additional

force components applied in the x and y directions. These components have the same

amplitude and frequency as the vertical one. At the end of the perturbation period,

the surface of the fluid becomes deflected by about 7% from the original flat position.

The additional forces are removed, and motion of the fluid continues influenced by

the vertical excitation only. Figures 6.6–6.9 show the time histories of the wave height

at the four corners of the container. To get a better idea of how much of the wave

motion is contributed by the two competing modes (1,0) and (0,1), we also show the

wave height reading at points (x, y) = (W, H/2) and (x, y) = (W/2, H). These points

correspond to the location of probes in the experiment of Feng et al. [56], and are

referred to as A1 and A2 respectively. The A1 amplitude identifies the (1,0)-mode

component and amplitude at A2 indicates the strength of the (0,1)-mode. The time

histories of these two amplitudes are shown in Figures 6.10 and 6.11. Even though

the perturbation exhibited no preference for either of the two modes, after its removal

we witness the growth of the (0,1)-mode.

Figures 6.12–6.14 show, for one period of oscillations, the perspective view of the

water surface and surface contours. The elevation plots are viewed from the negative

x direction. In the z direction, the visible bounding box extends from 0.5 to 0.9.

These snapshots are taken in the initial phase after the removal of the perturbation,
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when a mixed mode with nearly equal (1,0) and (0,1)-mode components is evident.

Another period of the wave motion is shown in Figures 6.15–6.17. Here the (0,1)-

mode is dominant, with a small, but non-zero, (1,0)-mode component. The two

competing modes have a slight phase difference, leading to a small “rotating” effect.

Such phase difference can be also ascertained by comparing Figures 6.10 and 6.11.

The experimental data predicts the presence of a mixed mode (called MS1 in [56]) at

this frequency. The experimental amplitude of the (0,1)-mode is 0.15, which compares

well with the numerical result (0.14 and growing slightly). The amplitude of the (1,0)-

mode obtained in the simulation is seen as 0.04 and falling, which is lower than the

experimental value of 0.08.

The common experience with the two sloshing problems presented in this section

is the presence of long-lasting transients which make reaching the final quasi-steady

state quite costly. Unfortunately this may be expected in all simulations involving

fluids of low viscosity.

Performance tests were conducted for the space-time implementation, with the

sloshing problem serving as a benchmark, yielding following results. On the 32K

processor CM-200 computer, the formation of the element level matrices and residu-

als took place at 800 million 64-bit floating point operations per second (megaflops).

The GMRES solution phase speed was observed as 872 megaflops. For a three di-

mensional space-time formulation, the bulk of time taken by the GMRES solution

process is consumed by the matrix vector product (see Box 5.3). As discussed in Sec-

tion 5.3, this product involves three components: gather, on-processor matrix vector

multiplication and scatter. Only the second component contributes to the floating

point operation count. The ratio of the computation time consumed by the three

stages was found to be 2:1:2. Thus the 872 megaflops speed for the entire GMRES

solver indicates that the on-processor matrix vector product is being computed near

its peak speed of 5 gigaflops. The performance of the entire code, including the paral-

lel input/output operations and problem setup, was 794 megaflops. As the speeds of

the two major code parts, i.e. the matrix formation stage and the GMRES solution

stage, are comparable, the overall performance of the program should not be sensitive
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to the choice of parameters such as the number of outer or non-linear iterations. Nev-

ertheless, such sensitivity may exist in other situations, as indicated by the timings

for the two-dimensional problems presented in the following section.
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Figure 6.6. Vertically excited tank: time history of the wave height at the (x, y) =

(0, 0) corner.
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Figure 6.7. Vertically excited tank: time history of the wave height at the (x, y) =

(W, 0) corner.
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Figure 6.8. Vertically excited tank: time history of the wave height at the (x, y) =

(0, H) corner.
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Figure 6.9. Vertically excited tank: time history of the wave height at the (x, y) =

(W, H) corner.
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Figure 6.10. Vertically excited tank: time history of the wave height at point A1.
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Figure 6.11. Vertically excited tank: time history of the wave height at point A2.
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Figure 6.12. Vertically excited tank: free surface view and isolines at t = 13.74, 14.20,

and 14.67 (from top to bottom).
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Figure 6.13. Vertically excited tank: free surface view and isolines at t = 15.13, 15.60,

and 16.06 (from top to bottom).
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Figure 6.14. Vertically excited tank: free surface view and isolines at t = 16.52, 16.99,

and 17.45 (from top to bottom).
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Figure 6.15. Vertically excited tank: free surface view and isolines at t = 71.29, 71.76,

and 72.22 (from top to bottom).
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Figure 6.16. Vertically excited tank: free surface view and isolines at t = 72.69, 73.15,

and 73.61 (from top to bottom).
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Figure 6.17. Vertically excited tank: free surface view and isolines at t = 74.08, 74.54,

and 75.00 (from top to bottom).
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6.2 Flows Past a Circular Cylinder

Flow past a circular cylinder has become a traditional benchmark problem used to test

the performance of various numerical methods. Contributing to its popularity is the

well-known behavior at low Reynolds numbers, repeatedly seen in experiments [57]

and past computations [58–60]. At the same time, at Reynolds numbers above 40

the problem possesses non-trivial time-dependent solutions. The famous von Karman

vortex street can challenge the time-stepping properties of the numerical scheme. The

changes in flow characteristics observed as the Reynolds number increases are also

relevant from the point of view of dynamical system analysis. In this section, the

basic stress-velocity-pressure formulation is used to simulate two-dimensional flow

past a cylinder at Reynolds numbers ranging from 1,000 to 10,000. The problem is

formulated as follows:

• A circular cylinder of unit radius is enclosed in a rectangular domain, as shown

in Figure 6.18. At the inflow boundary Γin we specify a unit horizontal velocity

component U , the upper and lower boundaries Γupper and Γlower are taken as

flow symmetry lines, and traction-free boundary condition is imposed at the

outflow boundary Γout. The cylinder surface Γcylinder is assumed to be a no-slip

boundary. The upstream and horizontal boundaries are located 16 units each

from the cylinder center, while the downstream boundary is 45 units away.

• A semi-structured mesh with 21,747 nodes and 21,408 elements covers the do-

main, as shown in Figure 6.19. The size of the smallest elements, i.e. the ones

adjacent to the cylinder, is approximately 0.0327 × 0.01.

• In later computations the domain was extended to 65 units downstream from

the cylinder, by adding a vortex dissipation zone with purposefully coarse el-

ements. This remedy was necessitated by several occurrences of the inflow at

the downstream boundary. Especially the strong startup vortices, when ad-

vected downstream, would occasionally interact with each other to provide a

small region of negative x-component of velocity at the outflow, making the
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Figure 6.18. Flow past a circular cylinder: domain description.

Figure 6.19. Flow past a circular cylinder: finite element mesh.

problem ill-posed at the subsequent time steps. In such cases, the artificially

coarse mesh added downstream provided the necessary dissipation of the vor-

tices, without disturbing the solution upstream. The extended mesh with 22,299

nodes and 21,968 elements is shown in Figure 6.20. It was used to compute the

flows at Re = 2, 000 and Re = 4, 000. Finally, the accuracy of the solution at

Re = 1, 000 was confirmed by interpolating the time dependent solution to a

new mesh (not shown here) with 50,827 nodes and 50,320 elements. This mesh
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was characterized by twice the resolution of the original mesh in both radial and

tangential directions around the cylinder. The simulation was continued with

the refined mesh, and the time trace of the aerodynamic coefficients observed.

After initial shake-up due to the pressure changes downstream (the extended

downstream region of the refined mesh has been assigned uniform flow condi-

tions, as the original mesh did not extend that far), the drag and lift oscillations

settled to within 1% of their original amplitudes and means. That led us to

believe that the two original meshes shown in Figures 6.19 and 6.20 provide

sufficient resolution, at least for Reynolds numbers close to Re = 1, 000.

Figure 6.20. Flow past a circular cylinder: extended finite element mesh.

• Based on the expected value of the Strouhal number (St = D/UT = 0.2, where

D is the diameter and T is the vortex shedding period), the time step size in

most cases is selected as ∆t = 0.1, to provide good temporal resolution, i.e.

roughly 100 time steps per period.

• All the cases discussed below share the use of a GMRES solver with diagonal

scaling. The computations were performed in 64-bit precision on the CM-200

computer, with the exception of the Reynolds number 1,000 case, which was

calculated on the CM-5 machine.
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6.2.1 Reynolds number 1,000

At the lower end of the studied spectrum we obtain a familiar vortex street — peri-

odic and regular. Apart from the minor changes in the vortex pattern, this solution

resembles the periodic solutions at Reynolds number 100, seen often in the numerical

tests. In fact, we have no reason to suppose that anything extraordinary occurs inside

the entire 40 < Re < 1000 range.

The initial condition for the simulation is the steady-state solution at Reynolds

number 100. The viscosity is decreased tenfold, and the time-dependent terms in the

formulation are enabled. A time step size of 0.05 was selected to provide sufficient

resolution of the vortex shedding periods, which are expected to be of the order of 10.

Later experience indicated that such temporal resolution was unnecessary for the

range of Reynolds number discussed here, and for subsequent simulations the time

step was increased to 0.1.

In the solution phase, the GMRES solver with the Krylov subspace dimension of

20 was used. The number of outer GMRES iterations was set to 5, and the method

took at most 4 nonlinear iterations to converge at each time step. At the end of each

Newton iteration loop, the initial residual was reduced by 5 orders of magnitude, and

its norm was below 10−6.

Figure 6.21 shows the vorticity fields at several instants leading to the establish-

ment of the periodic vortex shedding, starting with the symmetric initial condition.

Figure 6.22 shows in detail the flow field during one period of the vortex shedding.

The four frames correspond to, from top to bottom, the zero, maximum, zero and

minimum values of the lift coefficient. A magnified view around the cylinder is also

provided in the left column. Figures 6.23 and 6.24 show the time histories of the drag

and lift coefficients. The Strouhal number, St, is computed to be 0.241. The drag

coefficient varies from a minimum of 1.298 to a maximum of 1.756. The lift coeffi-

cient oscillates between −1.45 and +1.45. These values are very close to the values

obtained in separate experiments for Re = 950, using velocity-pressure space-time

formulation. They differ however from the experimental data of St = 0.21 and mean
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Figure 6.21. Flow past a circular cylinder at Reynolds number 1,000: vorticity field

at t = 0, 25, 50, 75, 100, 125, 150 and 175.

drag coefficient of 1.2 as quoted in [57]. Higher than expected values of the drag co-

efficient were also recently reported by Tabata [60]. This discrepancy may be due to

the two-dimensional character of the numerical simulations. It can be expected that

at these Reynolds numbers, three-dimensional and turbulence effects begin to signif-

icantly influence the aerodynamic forces acting on the body. This is in contrast with

the standard Re = 100 case, where the agreement between the numerical solution

and the laboratory experiment is satisfactory.
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Figure 6.22. Flow past a circular cylinder at Reynolds number 1,000: vorticity field

at t = 221.7, 223.6, 225.9, and 227.7.
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Figure 6.23. Flow past a circular cylinder at Reynolds number 1,000: time history of

the drag coefficient.
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Figure 6.24. Flow past a circular cylinder at Reynolds number 1,000: time history of

the lift coefficient.
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6.2.2 Reynolds number 2,000

Increasing the Reynolds number to 2,000 results in a flow field qualitatively different

from the previous case. Again the steady flow at Reynolds number 100 serves as an

initial condition. The evolution of the flow is shown in Figures 6.25 and 6.26. Due

to the complex temporal behavior of the flow at this and higher Reynolds numbers,

this and later flow evolution figures show more frequent snapshots of the flow field

than for Reynolds number 1,000. For 0 < t < 90 the flow retains its symmetric

character. At t ≈ 100 the small asymmetric perturbances caused by the machine

round-off errors accumulate sufficient strength to cause a global loss of symmetry.

After the two large stationary vortices which developed in the symmetric phase float

downfield, vortex shedding is established. In contrast to the stationary vortex street

at Reynolds number 1,000, in the current case the vortex street oscillates about

the centerline of the domain. This phenomenon is also evident in the drag and lift

coefficient plots, in which the basic vortex shedding frequency is modulated with a

∼ 10 times lower secondary frequency. This is seen in Figures 6.27 and 6.28. The

Strouhal number based on the primary frequency of the lift coefficient oscillations is

0.244. The GMRES solver with the Krylov subspace dimension of 40 was employed.

Number of outer GMRES iterations was set to 10, and the computations required at

most 3 nonlinear iterations to converge at each time step.
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Figure 6.25. Flow past a circular cylinder at Reynolds number 2,000: vorticity field at

t = 10, 20, 30, 40, 50, 60 (left column), 70, 80, 90, 100, 110, and 120 (right column).
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Figure 6.26. Flow past a circular cylinder at Reynolds number 2,000: vorticity field

at t = 130, 140, 150, 160, 170, 180 (left column), 190, 200, 210, 220, 230, and 240

(right column).
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Figure 6.27. Flow past a circular cylinder at Reynolds number 2,000: time history of

the drag coefficient.
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Figure 6.28. Flow past a circular cylinder at Reynolds number 2,000: time history of

the lift coefficient.
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6.2.3 Reynolds number 4,000

This case also starts from the steady solution at Reynolds number 100. Suspecting

the importance of hysteresis effects in the studied dynamical system, it was desirable

to compute as many cases as possible from the same initial condition. The evolution

of the vortex street is shown in Figure 6.29, and its periodic regime is documented in

Figure 6.30. Unlike previous cases, the vortex street is steadily deflected downward

from the plane of symmetry of the domain. This is also evident from the non-zero

mean value of the lift coefficient and non-sine-wave form of the drag coefficient os-

cillations, seen in Figures 6.31 and 6.32. This asymmetry was also detected in the

Re = 5, 000 case, not quoted here due to its similarity to the presently discussed simu-

lation. When the phenomenon was first encountered at Re = 5, 000, we proceeded to

convince ourselves that the non-symmetric behavior is not due to an error in problem

specification. The entire solution field was flipped about the centerline of the domain,

and used as an initial condition. Indeed the flow field continued unperturbed, this

time with the opposite deflection of the wake, proving that two distinct solutions are

admissible by the system.

The observed Strouhal number is 0.253. The GMRES solver characteristics were

the same as in the Re = 2, 000 case.
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Figure 6.29. Flow past a circular cylinder at Reynolds number 4,000: vorticity field at

t = 10, 20, 30, 40, 50, 60 (left column), 70, 80, 90, 100, 110, and 120 (right column).
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Figure 6.30. Flow past a circular cylinder at Reynolds number 4,000: vorticity field

at t = 130, 140, 150 (left column), 160, 170 and 180 (right column).
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Figure 6.31. Flow past a circular cylinder at Reynolds number 4,000: time history of

the drag coefficient.

6.2.4 Reynolds number 10,000

The last simulation involves flow at Reynolds number 10,000. We start from an initial

condition of a time periodic flow at Reynolds number 1,000. A decreased time step

size of 0.05 was used.

In this case, the GMRES solver required a Krylov subspace of size 20, with 5 outer

GMRES iterations, and an average of 4 nonlinear iterations per time step.

Figure 6.33 shows the vorticity fields at several equally spaced instants after irreg-

ular flow field seems fully developed. In contrast to the other cases discussed in this

section, many different frequencies appear to be present in the drag and lift coefficient

fluctuations, as seen in Figures 6.34 and 6.35.

It should be noted that the above simulations are relevant from the point of view of

dynamical system analysis. The dynamical system in question is governed by strictly

two-dimensional Navier-Stokes equations. In practical flows at this Reynolds num-

ber, the three-dimensional effects, most notably the onset of turbulence, cannot be
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Figure 6.32. Flow past a circular cylinder at Reynolds number 4,000: time history of

the lift coefficient.

ignored. Comparison with experimental data contained e.g. in [57] and [61] reveals

that higher than expected values of mean drag coefficient, amplitude of the lift coef-

ficient and vortex shedding frequency are obtained with the current two-dimensional

simulations. The “dead water zone”, prominently appearing downstream of the cylin-

der in visualizations contained in [61], is also absent from the two-dimensional flow.

The performance of the parallel two-dimensional velocity-pressure-stress imple-

mentation was found to be slightly different than for the three-dimensional cases

mentioned earlier. Due to the smaller storage requirements for the element-level ma-

trices, two-dimensional problems can employ higher number of elements for the same

memory usage. This leads to an increase in the extents of parallel dimensions and

a corresponding decrease in the serial dimensions of the variables involved in the

matrix formation phase (see [21] for the explanation of concepts of serial and par-

allel dimensions). The result is an increase in the matrix formation speed to 1.607

gigaflops on a 32K-processor CM-200 machine. In the GMRES solution phase more

time was consumed by the Gramm-Schmidt orthogonalization process (see Box 5.3).
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This resulted in an overall speed decrease for the GMRES stage to 518 megaflops.

Total performance including all program stages was measured at 561 megaflops, with

GMRES part accounting for most of the computations, and consequently, high influ-

ence on the total speed. Note that the performance measurements improved by about

15% with respect to those quoted in [21] for an equivalent problem due to hardware

improvements. The disparate timings for the GMRES and matrix formation steps

may influence the choice of solver parameters. For example, with a fixed sum of outer

GMRES iterations per time step, the high speed of the formation phase prompts us

to compute left hand side more often, i.e., reduce the number of outer iterations in a

non-linear iteration, but increase the number of non-linear iterations per time step.

The small price paid in the more frequent left hand side recalculations often will pay

off in the faster convergence within a time step.
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Figure 6.33. Flow past a circular cylinder at Reynolds number 10,000: vorticity field

at t = 50, 55, 60, and 65.
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Figure 6.34. Flow past a circular cylinder at Reynolds number 10,000: time history

of the drag coefficient.
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Figure 6.35. Flow past a circular cylinder at Reynolds number 10,000: time history

of the lift coefficient.
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6.3 Contraction of a Viscoelastic Fluid

In this section, the stress-velocity-pressure formulation is employed to simulate plane

flow of a viscoelastic fluid through a 4 to 1 contraction. This problem has been used

by other finite element researchers as a test case for viscoelastic formulations [37,39].

The problem may be stated as follows:

• An Oldroyd-B fluid flows through a contracting pipe which is shown in Fig-

ure 6.36. At the inflow boundary Γin we specify a fully developed (parabolic)

velocity and extra stress profiles with unit maximum velocity. The lower bound-

ary Γlower is a no-slip surface, while the upper boundary Γupper is taken as a flow

symmetry line. A fully developed velocity profile is also specified at the down-

stream boundary Γout. The half-width and length are 4 and 8, respectively, for

the wide conduit and 1 and 5 downstream of the contraction.

Γin

Γout

Γlower

Γupper

-
x

6y

Figure 6.36. Contraction of a viscoelastic fluid: domain description.

• The viscosity of the Oldroyd-B fluid is taken as µ = 0.5, with µ1 = 0.445 and

µ2 = 0.055. The flow is assumed to be creeping and steady. The Deborah

number is based on the wall shear rate at the outlet for a fully developed profile

there De = λγwall. In the present case γwall = 8.0.

• A mesh with 1,225 nodes and 1,140 elements is used, as shown in Figure 6.37.

This is the same mesh as the mesh B used in [39]. Future simulations will have
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to take into account the possibility of an asymmetric time dependent flow fields

with respect to the centerline, which now forms the upper boundary.

Figure 6.37. Contraction of a viscoelastic fluid: finite element mesh.

• All the cases discussed here were computed using a direct solver. The compu-

tations were performed in 64-bit precision on the Cray-XMP machine.

In Figures 6.38–6.41 we present the flow fields for De = 0.0 (Newtonian fluid),

De = 0.8, De = 1.6 and De = 3.2. The first two viscoelastic cases are the subject

of investigation also in [39]. In the figures we show the three components of T1,

streamlines, velocity vectors and the pressure field. The primary variables, i.e., veloc-

ity and pressure, remain relatively insensitive to the increase in viscoelastic character

of the fluid. The one visible change in the flow features is the slight expansion of

the recirculation region in the corner upstream of the contraction. The normal stress

fields on the other hand are visibly advected downstream. At De = 3.2, there are

indications that the outflow boundary condition presents a difficulty. This should

not influence greatly the flow field in the region of interest, i.e. near the singularity.

However, in future simulations, the domain will have to be extended significantly

farther downstream. The convergence at the higher values of the Deborah numbers is

achieved only through a careful continuation process, restarting from converged result

at a lower value of De. This is roughly equivalent to reaching the steady state as a

limit of a time dependent solution, as it is done in [37, 39]. We didn’t continue the

computations past De = 4.0, because of the increasing irregularities near the outlet.
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In order to compare the results with the ones obtained through the use of com-

patible interpolations for all variables, we also plot the sections of the stress field

along the y = 3.0 line which is passing through the singularity. The normal stress

component T1xx for the four cases is shown in Figure 6.42. Non-dimensionalizing the

stress with µ1γwall we obtain a maximum of 6.17 and 9.08 for De = 0.8 and De = 1.6,

compared to the corresponding maxima of 7.5 and 11.25 obtained in [39]. The stress

discontinuity is relatively free of oscillations, with only one undershoot seen upstream

of the contraction.
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Figure 6.38. Contraction of a viscoelastic fluid: De = 0.0 case.
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Figure 6.39. Contraction of a viscoelastic fluid: De = 0.8 case.
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Figure 6.40. Contraction of a viscoelastic fluid: De = 1.6 case.
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Figure 6.41. Contraction of a viscoelastic fluid: De = 3.2 case.
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Figure 6.42. Contraction of a viscoelastic fluid: T1xx profiles along the y = 3.0 line

for (from top to bottom) De = 0.0, De = 0.8, De = 1.6 and De = 3.2.

107



Chapter 7

Conclusions

Our aim was to gain more understanding of the issues involved in numerical simulation

of incompressible flows with a finite element method. The work concentrated on mixed

formulations circumventing the Babuška-Brezzi condition.

We began by introducing the governing equations of the physical problem, includ-

ing the incompressible Navier-Stokes equations, with a range of boundary conditions.

Both Newtonian and non-Newtonian constitutive equations were given. The latter

included upper-convected Maxwell and Oldroyd models characterizing the behavior

of viscoelastic fluids.

We proceeded to consider a numerical method capable of modeling incompressible

fluid flows in a deforming domain. After a review of alternative approaches, the cur-

rent method has been introduced. It is based on the stabilized mixed velocity-pressure

space-time formulation. The simultaneous discretization of both spatial and temporal

domains via a finite element technique automatically accounts for the mesh deforma-

tion and non-zero velocities of the nodes. The interpolation functions are allowed to

be discontinuous in time. The Galerkin formulation of the problem is stabilized with

the least-squares form of the momentum and continuity equations. Such a stabiliza-

tion enables us to use arbitrary combinations of interpolation function spaces for the

velocity and pressure, and provides stability in the presence of sharp boundary layers,

as well as at high Reynolds numbers. The method gives us substantial latitude re-
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garding the movement of the mesh inside the domain, and to some extent, also at the

surface. We outlined several mesh moving strategies available to us in this respect.

As a first illustration, we presented a problem involving extremely large deformation

of the initial domain. We deferred the demonstration of the mesh moving strategy

applicable to modestly deforming domains to a dedicated chapter discussing other

numerical examples. Guidelines for obtaining a matrix form of the problem were

given, along with remarks about the massively parallel implementation of the matrix

formation process.

In a separate development, we attempted to formulate a method capable of simu-

lating incompressible flow of viscoelastic fluids. Currently available solutions for this

task were first outlined. Then, a stabilized mixed stress-velocity-pressure formulation

has been introduced. This method may be used with any combination of interpolation

functions for all three fields involved. The stabilization is achieved through the addi-

tion of least-squares forms of the momentum, constitutive and continuity equations.

The first provides stability in the presence of high streamwise gradients, and allows

us to circumvent the compatibility condition for the velocity and pressure interpo-

lation function spaces. The second performs a similar function for the constitutive

equation, which in the case of viscoelastic fluids, acquires a transport character. This

stabilizing component also removes the compatibility requirement for the velocity

and stress interpolations. The final stabilization factor improves convergence at high

Reynolds numbers. The temporal discretization of the method can employ either a

classical α-scheme, which is used for the numerical examples presented later, or a full

space-time approach.

Both formulations presented so far benefit from implicit solution techniques, which

were discussed next. We started with a brief review of direct solvers, including the

ideas of skyline storage, bandwidth and bandwidth reduction. Recognizing the ex-

cessive cost of the direct solution, we moved on to the iterative methods in general,

and the Generalized Minimum Residual method in particular. An efficient version

of that algorithm was recounted, and the issues of convergence and preconditioning

touched upon. The implementation of linear equation solvers on massively parallel
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computer has been a challenging topic. Here, we described our experience in this

area, stemming from the implementation of the GMRES method on a data parallel

architecture.

Finally, we presented the results from several computations which were performed

with the aid of numerical methods described so far. The velocity-pressure space-

time formulation has been used for three-dimensional simulation of large amplitude

sloshing in a rectangular tank. When subjected to a horizontal excitation, the wave

motion has been found to be two-dimensional and consisting of the expected first

mode only. When the excitation is vertical, three-dimensional waves were observed.

The stress-velocity-pressure formulation, coupled with the constitutive equations of

a Newtonian fluid, was used to perform high-resolution simulations of flow past a

circular cylinder at Reynolds number ranging from 1,000 to 10,000. Lastly the con-

stitutive equation for an Oldroyd-B fluid was substituted and the same formulation

was used to compute the flow of a viscoelastic fluid through a contraction.

7.1 Future Research Directions

The continuation of the work presented in this thesis is expected to include:

• The inclusion of more complete set of free surface effects, such as contact angles

and surface tension in three dimensions.

• Completion of the stability and accuracy analysis for the stress-velocity-pressure

method in the context of viscoelastic constitutive laws, with possible new designs

for the stabilization parameter.

• Efficient implementation of the CEBE preconditioner on data parallel architec-

tures.

• An in-depth study of wave mode competition in vertically excited rectangular

and cylindrical tanks.
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• Cross-reference of two-dimensional simulations of flow past a cylinder with

three-dimensional ones.

• Pre- and post-processing work to improve the ability to handle three-dimensio-

nal flow computations. This includes mesh generation and visualization efforts.

111



Bibliography

[1] P.M. Gresho, “Incompressible fluid dynamics: Some fundamental formulation

issues”, Annual Review of Fluid Mechanics, 23 (1991) 413–453.

[2] F.H. Harlow, J.E. Welch, J.P. Shannon, and B.J. Daly, “The MAC method”,

Report LA-3425, Los Alamos Scientific Laboratory, 1965.

[3] B.J. Daly, “A technique for including surface tension effects in hydrodynamics

calculations”, Journal of Computational Physics, 4 (1969) 97–117.

[4] R.K.C. Chan and R.L. Street, “A computer study of finite-amplitude water

waves”, Journal of Computational Physics, 6 (1970) 68–94.

[5] C. W. Hirt and B. D. Nichols, “Volume of Fluid (VOF) method for the dynamics

of free boundaries”, Journal of Computational Physics, 39 (1981) 201–225.

[6] C.W. Hirt, J.L. Cook, and T.D. Butler, “A Lagrangian method for calculating the

dynamics of an incompressible fluid with free surface”, Journal of Computational

Physics, 5 (1970) 103–124.

[7] T. Okamoto and M. Kawahara, “Two-dimensional sloshing analysis by La-

grangian finite element method”, International Journal for Numerical Methods

in Fluids, 11 (1990) 453–477.

[8] C.W. Hirt, A.A. Amsden, and J.L. Cook, “An arbitrary Lagrangian Eule-

rian computing method for all flow speeds”, Journal of Computational Physics,

14 (1974) 227–253.

112



[9] T.J.R. Hughes, W.K. Liu, and T.K. Zimmermann, “Lagrangian-Eulerian finite

element formulation for incompressible viscous flows”, Computer Methods in Ap-

plied Mechanics and Engineering, 29 (1981) 329–349.

[10] A. Huerta and W.K. Liu, “Viscous flow with large free surface motion”, Computer

Methods in Applied Mechanics and Engineering, 69 (1988) 277–324.

[11] A. Soulaimani, M. Fortin, G. Dhatt, and Y. Ouellet, “Finite element simulation

of two- and three-dimensional free surface flows”, Computer Methods in Applied

Mechanics and Engineering, 86 (1991) 265–296.

[12] P. Jamet and R. Bonnerot, “Numerical solution of the Eulerian equations of

compressible flow by a finite element method which follows the free boundary

and the interfaces”, Journal of Computational Physics, 18 (1975) 21–45.

[13] R. Bonnerot and P. Jamet, “Numerical computation of the free boundary for

the two-dimensional Stefan problem by space-time finite elements”, Journal of

Computational Physics, 25 (1977) 163–181.

[14] D.R. Lynch and W.G. Gray, “Finite element simulation of flow in deforming

regions”, Journal of Computational Physics, 36 (1980) 135–153.

[15] C.S. Frederiksen and A.M. Watts, “Finite-element method for time-depen-

dent incompressible free surface flows”, Journal of Computational Physics,

39 (1981) 282–304.

[16] P. Jamet, “Galerkin-type approximations which are discontinuous in time for

parabolic equations in a variable domain”, SIAM Journal of Numerical Analysis,

15 (1978) 912–928.

[17] T.J.R. Hughes and G.M. Hulbert, “Space-time finite element methods for elas-

todynamics: formulations and error estimates”, Computer Methods in Applied

Mechanics and Engineering, 66 (1988) 339–363.

113



[18] P. Hansbo and A. Szepessy, “A velocity-pressure streamline diffusion finite ele-

ment method for the incompressible Navier-Stokes equations”, Computer Meth-

ods in Applied Mechanics and Engineering, 84 (1990) 175–192.

[19] T.E. Tezduyar, M. Behr, and J. Liou, “A new strategy for finite element com-

putations involving moving boundaries and interfaces – the deforming-spatial-

domain/space-time procedure: I. The concept and the preliminary tests”, Com-

puter Methods in Applied Mechanics and Engineering, 94 (1992) 339–351.

[20] T.E. Tezduyar, M. Behr, S. Mittal, and J. Liou, “A new strategy for finite ele-

ment computations involving moving boundaries and interfaces – the deforming-

spatial-domain/space-time procedure: II. Computation of free-surface flows, two-

liquid flows, and flows with drifting cylinders”, Computer Methods in Applied

Mechanics and Engineering, 94 (1992) 353–371.

[21] M. Behr, A. Johnson, J. Kennedy, S. Mittal, and T.E. Tezduyar, “Computation

of incompressible flows with implicit finite element implementations on the Con-

nection Machine”, Computer Methods in Applied Mechanics and Engineering,

108 (1993) 99–118.

[22] T.E. Tezduyar, M. Behr, S. Mittal, and A.A. Johnson, “Computation of unsteady

incompressible flows with the finite element methods – space-time formulations,

iterative strategies and massively parallel implementations”, in P. Smolinski,

W.K. Liu, G. Hulbert, and K. Tamma, editors, New Methods in Transient Anal-

ysis, AMD-Vol.143, ASME, New York, (1992) 7–24.

[23] S. Mittal and T.E. Tezduyar, “A finite element study of incompressible flows past

oscillating cylinders and airfoils”, International Journal for Numerical Methods

in Fluids, 15 (1992) 1073–1118.

[24] S. Mittal, Stabilized Space-Time Finite Element Formulations for Unsteady In-

compressible Flows Involving Fluid-Body Interactions, Ph.D. thesis, Department

of Aerospace Engineering and Mechanics, University of Minnesota, 1992.

114



[25] P. Hansbo, “The characteristic streamline diffusion method for the time-

dependent incompressible Navier-Stokes equations”, Computer Methods in Ap-

plied Mechanics and Engineering, 99 (1992) 171–186.

[26] S. Aliabadi and T.E. Tezduyar, “Space-time finite element computation of com-

pressible flows involving moving boundaries and interfaces”, Computer Methods

in Applied Mechanics and Engineering, 107 (1993) 209–224.

[27] J.P. Benque, A. Haugel, and P.L. Viollet, “Numerical methods in environmental

fluid mechanics”, in M.B. Abbott and J.A. Cunge, editors, Engineering Applica-

tions of Computational Hydraulics, volume II, Pitman, 1982.

[28] A.N. Brooks and T.J.R. Hughes, “Streamline upwind/Petrov-Galerkin formu-

lations for convection dominated flows with particular emphasis on the incom-

pressible Navier-Stokes equations”, Computer Methods in Applied Mechanics and

Engineering, 32 (1982) 199–259.
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