
Chapter 4

Stress-Velocity-Pressure

Formulation

In this chapter, a stress-velocity-pressure formulation is introduced, with the ob-

jective of modeling incompressible viscoelastic flows. In Section 4.1 a background

information is provided describing previous approaches to the problem at hand. The

new variational formulation is introduced in Section 4.2 and its details are discussed

in Section 4.3. Implementation and parallelization aspects for the stress-velocity-

pressure formulation are nearly identical to those of the space-time velocity-pressure

formulation. The discussions contained in Sections 3.5 and 3.6 apply here as well,

and will not be restated.

4.1 Background

The numerical modeling of fluid flows governed by viscoelastic constitutive relations

has been fraught with disappointments. The first attempts of formulating a suitable

mixed finite element method often proved unsuccessful. Only recently the proper

methods of approximating the governing equations are becoming apparent.

The viscoelastic constitutive models which received the most attention in the

finite element community so far have been of the Oldroyd and Maxwell kind, and

39



these models are used in the current study as well. A description of the constitutive

relations was presented in Section 2.2. Here we will discuss the character of these

equations and their impact on the numerical formulations.

The evolution equation for the extra stress makes it impossible to absorb it explic-

itly into the momentum equation, as is commonly done in the case of a Newtonian

fluid. Thus the extra stress components have to be treated as additional degrees

of freedom, complementing the velocity and pressure ones. A mixed formulation is

naturally extended to accommodate the added equation and unknown. However,

an arbitrary choice of the stress interpolation often leads to failure, as documented

in [37]. In that study, the authors find that the stress interpolation needs to be

of sufficiently high order in relation to the velocity interpolation, for the results to

be acceptable. This requirement is not limited to the viscoelastic constitutive equa-

tions. In fact, it applies even when a three-field discretization is attempted for purely

Newtonian fluids. On the other hand, the effect of the interpolation incompatibil-

ity will be magnified in the viscoelastic fluids, which normally exhibit much larger

stress and strain variations than their Newtonian counterparts. The difficulty can be

circumvented however with a slightly modified mixed formulation, such as the one

introduced in [34], of which the method presented here is an extension.

The constitutive formula for a Maxwell-B fluid deviates from a Newtonian fluid

with the inclusion of a transport term for the extra stress. The experience with

advective-diffusive systems, including Navier-Stokes equations, quickly allows us to

predict that the hyperbolic nature of the constitutive equation will present numeri-

cal difficulties when Galerkin method is applied. Indeed, the values of the Deborah

number for which a Galerkin formulation remains convergent are extremely small, as

seen, e.g., in [38]. The remedy follows the path of the various upwinding methods

developed for the advection-diffusion equation, or its advective limit. In [37] both the

consistent SUPG and an inconsistent Streamline Upwind (SU) methods are consid-

ered. The SU approach is found to stabilize the Galerkin method sufficiently, but the

various coupling effects render the potentially more accurate SUPG method ineffec-

tive. Similar conclusion is reached in [39], where a consistent upwinding inherent in

40



the Lesaint-Raviart method has to be augmented by an inconsistent SU addition.

It should also be noted that the Maxwell-B fluid is a special case of an Oldroyd-B

fluid (with vanishing Newtonian solvent contents), and also the hardest one to treat

numerically. As discussed in [37], the retardation time introduced in the Oldroyd

fluid helps to localize the errors inevitable in the high gradient areas.

4.2 Variational Formulation

We present now the stress-velocity-pressure formulation in its general form, i.e., for

the Oldroyd-B constitutive equation. The special cases of Maxwell-B and Newtonian

fluids can easily be derived from this general formulation. In contrast to the space-

time formulation for Newtonian fluids presented in Chapter 3, the nsd(nsd +1)/2

independent components of the extra stress tensor T1 are treated as additional un-

knowns, and equation (2.13) enters the variational formulation directly. The case of

deforming domains is not covered here, so the subscripts denoting domain time level

are dropped. We also drop the subscript from T1, as this is the only stress component

entering the formulation explicitly. The interpolation function spaces for the velocity,

pressure and extra stress tensor are given as:

Sh
u =

{
uh | uh ∈

[
H1h(Ω)

]nsd
,uh .

= gh on Γg

}
, (4.1)

Vh
u =

{
uh | uh ∈

[
H1h(Ω)

]nsd
,uh .

= 0 on Γg

}
, (4.2)

Sh
p = Vh

p =
{

ph | ph ∈ H1h(Ω)
}

, (4.3)

Sh
T = Vh

T =
{

Th | Th ∈
[
H1h(Ω)

]nsd(nsd+1)/2
}

. (4.4)

In the λ > 0 case, the spaces Sh
T and Vh

T must also account for the essential boundary

conditions for the extra stress at the inflow boundary of the domain.

The velocity-pressure-stress formulation is an extension of Method II described

in [34] to time-dependent, non-Newtonian problems, and can be written as follows:

41



find uh ∈ Sh
u, ph ∈ Sh

p and Th ∈ Sh
T such that:

∫
Ω
wh · ρ

(
∂uh

∂t
+ uh · ∇uh − f

)
dΩ −

∫
Ω
∇ ·whphdΩ +

∫
Ω

ε(wh) : ThdΩ

+ 2µ2

∫
Ω

ε(wh) : ε(uh) −
∫
Γh

wh · hhdΓdΩ +
∫
Ω

qh∇ · uhdΩ

+
1

2µ1

∫
Ω
Sh : ThdΩ +

λ

2µ1

∫
Ω
Sh :

5
ThdΩ −

∫
Ω
Sh : ε(uh)dΩ

+
nel∑
e=1

∫
Ωe

τMOM

1

ρ

[
ρ

(
∂wh

∂t
+ uh · ∇wh

)
+ ∇qh −∇·Sh − 2µ2∇· ε(wh)

]

·
[
ρ

(
∂uh

∂t
+ uh · ∇uh − f

)
+ ∇ph −∇·Th − 2µ2∇· ε(uh)

]
dΩ

+
nel∑
e=1

∫
Ωe

τCONS2µ1

[
1

2µ1

Sh +
λ

2µ1

5
Sh − ε(wh)

]

:

[
1

2µ1

Th +
λ

2µ1

5
Th − ε(uh)

]
dΩ

+
nel∑
e=1

∫
Ωe

τCONT ∇·whρ∇·uhdΩ = 0, ∀wh∈ Vh
u, ∀qh∈ Vh

p , ∀Sh∈ Vh
T.(4.5)

The design of the parameters τCONS, τMOM and τCONT is discussed in Section 4.3. In

the computations that follow, formulation (4.5) has been time-discretized with the

Crank-Nicholson scheme. The use of discontinuous Galerkin discretization (space-

time method) is also planned. Note that such discretization would involve jump

terms on the velocity, such as those seen in (3.4). Moreover, if λ > 0, jump terms on

the extra-stress would also be included.

The time derivative of the velocity weighting function represents the variation

of the time derivative of the velocity itself. For example, in the case of the space-

time method, this term is the true time derivative of the weighting function. On

the other hand, in the case of Euler-type time discretization with time step ∆t, the

term ∂uh/∂t is replaced by (uh
n+1 − uh

n)/∆t, with uh
n known, and thus the variation

term becomes wh/∆t. Similar remarks apply to the time derivative of the extra-stress

weighting function.

42



4.3 Stabilization Details

The addition of the least-squares form of the momentum equation, i.e., the τMOM-term

in (4.5), stabilizes the method against two possible numerical difficulties, which were

already discussed in Section 3.3. Similarly, the least-squares form of the continuity

equation (τCONT-term) stabilizes the method at high Reynolds numbers, and was also

discussed in Section 3.3. The new stabilization term in (4.5) is a least-squares form of

the constitutive equation. The main purpose of this term is to stabilize the method

against numerical oscillations, observed primarily in the velocity field, and caused

by using certain interpolations for the velocity and extra-stress fields. Without such

stabilization, the stability of the formulation (4.5) can be proven only if the inf-sup

condition is satisfied by the velocity and stress interpolation functions:

sup
06=T∈Sh

T

(T, ε(u))

‖ T ‖0
≥ C ‖ u ‖1, u ∈ Sh

u. (4.6)

This condition is analogous to the inf-sup, or Babuška-Brezzi, condition binding pos-

sible interpolation functions for the velocity and pressure fields already considered

in Section 3.3. Pairs of interpolation function spaces satisfying (4.6) are said to be

compatible. The use of incompatible interpolations for the velocity and stress seems

to be responsible for the failure of the early attempts at viscoelastic simulations (see,

e.g., [38]). The compatibility condition requires the stress interpolation to be rich

enough with respect to the velocity interpolation. Note that if a standard (Galerkin)

mixed method is to be used, the velocity field must be already enriched to eliminate

the possible zero-energy pressure modes, so that the cost of the stress interpolation

satisfying (4.6) can be quite prohibitive. In fact, Marchal and Crochet [37] investi-

gated the 2× 2, 3× 3 and 4× 4 stress macro-elements which are used in conjunction

with a bi-quadratic velocity interpolation. These elements consist of, respectively,

4, 9 and 16 bilinear elements corresponding to one velocity element, as shown in

Figure 4.1. Acceptable results are obtained only with the use of costly 4 × 4 stress

sub-elements. In [40] an attempt is made at reducing the cost by using the 4 × 4

stress sub-elements only in the small areas of high gradients of the stress field, while

43



s

s

s

s

s

s

s

s

s

T2×2

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

T3×3

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

T4×4

s

s

s

s

s

s

s

s

s

u

s

s

s

s

p

Figure 4.1. Interpolation sets: bi-linear stress sub-elements, bi-quadratic velocity

element and bi-linear pressure element of Marchal and Crochet.

employing the economical 2 × 2 elements elsewhere. In some problems the areas of

rapidly varying stress can be pinpointed a priori, and this approach ought to be suc-

cessful. In more complicated problems, especially time-dependent ones, some kind of

adaptive switching of stress interpolation will be clearly required. In [41], Fortin and

Fortin achieve the compatibility by using a discontinuous interpolation for the stress,

as shown in Figure 4.2.

s s s

s s

s s s

T

s

s

s

s

s

s

s

s

s

u

s s

s

p

Figure 4.2. Interpolation sets: discontinuous quadratic stress element, bi-quadratic

velocity element and discontinuous linear pressure element of Fortin and Fortin.

The fact that certain exotic combinations of interpolations are compatible in the

44



sense dictated by (4.6) only underscores the fact that many more convenient combina-

tions are excluded. Equal order interpolations for velocity and stress are among those

affected. The success of methods which circumvent the Babuška-Brezzi condition on

velocity and pressure leads us to believe that similar approach may prove fruitful

in the case of mixed stress-velocity methods. The idea is to modify the weighting

function for the constitutive equation, providing necessary detection of all velocity

fields, without compromising the accuracy of the Galerkin formulation. Indeed, the

addition of the strain-stabilizing term, hereafter referred to as the τCONS-term, al-

lows us to circumvent condition (4.6) and use arbitrary combinations of interpolation

functions. Together with the pressure-stabilizing terms already present in the formu-

lation, this gives us a complete freedom regarding the choice of function spaces for the

mixed method (4.5). In all computations that follow we employ equal-order bilinear

interpolations for all the unknown fields, as is schematically shown in Figure 4.3.

s

s

s

s

s

s

s

s

s

s

s

s

T u p

Figure 4.3. Interpolation sets: equal-order bi-linear stress, velocity and pressure

element admissible by the stabilized formulation.

The instability of the formulation in the absence of the strain-stabilizing term does

not seem as severe as the zero-energy pressure modes one encounters in the absence

of the pressure-stabilizing term. In fact the formulation (4.5) has been used to solve

several Newtonian fluid flow problems with τCONS = 0.0. Yet in some cases, like the

“stick-slip” problem oftentimes used to test numerical methods for viscoelasticity, the

importance of the strain-stabilization becomes evident. In this problem the no-slip

boundary condition in a fully developed Stokes flow is suddenly relaxed to allow full

slip. While oscillations in the velocity field are clearly visible when τCONS = 0.0 is used,

45



a smooth velocity profile is obtained with the present formulation with τCONS = 1.0.

The streamwise velocity component for the two cases is presented in Figure 4.4.

τCONS = 0.0 τCONS = 1.0
 
0
.
0

 
0
.
2

 
0
.
4

 
0
.
6

 
0
.
8

 
1
.
0

u

-10.
0

 0.0
 10.

0  20.
0

x

 
0
.
0

 
0
.
2

 
0
.
4

 
0
.
6

 
0
.
8

 
1
.
0

u

-10.
0

 0.0
 10.

0  20.
0

x

Figure 4.4. Strain stabilization: streamwise velocity for the “stick-slip” problem.

In computations involving viscoelastic flows, the τCONS-term has an additional role

as an SUPG-like stabilizer for the constitutive equation, which now acquires transport

character. The relevant quantity in this term is the product τCONSλ
2(2µ1)

−1u· ∇Sh ·
u · ∇Th, which provides an optimal amount of streamwise diffusion, counteracting

the negative numerical diffusion inherent in the Galerkin method when applied to

advection-dominated problems. Even with these stabilizations, for highly viscoelastic

flows one may encounter oscillations of the stress field, as the SUPG stabilization

can act only in the direction and in the presence of advective velocity. The sharp

boundary layers in the stress variable can arise also in a cross-stream direction, with

negligible local velocity. This provides an argument for an additional discontinuity

capturing term – its use is anticipated in future research.

46



4.3.1 Parameter Design

The design of the parameters τMOM and τCONT coincides with formulas (3.17) and (3.18)

in Section 3.3. The stability and accuracy study with this choice of parameters is

presented for the steady Newtonian case in [34]. In the Newtonian case the τCONS is

taken simply as

τCONS = 1, (4.7)

as all values of τCONS > 0 are admissible from the point of view of the stability of

the formulation. The design of the parameter τCONS for the non-Newtonian fluid is

more difficult, as this is the case for which no stability and accuracy analysis was

performed. Keeping in mind that the τCONS-term is acting as a SUPG stabilizer in a

system with no diffusion, the first empirical design of τCONS is formulated as follows:

τCONS = max

(
1,

he

2λ|uh|2

)
, (4.8)

where he and |uh|2 are defined as in Section 3.3. This design matches the requirement

of SUPG-like stabilization of the stress transport terms in the advective limit, i.e.,

when λ|uh|2 >> 1, with the need to overcome the incompatibility between the stress

and the velocity fields discussed earlier.

The obvious problem with this formula is the unboundedness of the parameter

as we approach the Newtonian case. We modify the expression to limit the value of

τCONS for small λ|uh|2:

τCONS =


 max

(
1, he

2λ|uh|2
)
, λ|uh|2 > 1

max (1, he) , λ|uh|2 ≤ 1
(4.9)

This initial design is apparently successful for some cases, as seen in Section 6.3. The

final design of τCONS will have to be based however on a sound theoretical foundation,

like the ones available for τMOM and τCONT.

47



Chapter 5

Solution Methods

The finite element discretizations described in the preceding chapter lead to large

implicit systems of equations which need to be solved in an efficient manner. The

direct and iterative methods of solution of such systems are covered in Sections 5.1

and 5.2. Especially here the implementation issues are non-trivial, and they are

discussed in Section 5.3.

5.1 Direct Solution Techniques

As seen, e.g., in Section 3.5, at each non-linear iteration step of a finite element

procedure, we have the task of solving a large linear equation system:

Ax = b. (5.1)

Initially A will be assumed to be a N ×N general matrix, while later we will discuss

special properties of the matrices arising from the finite element discretizations. The

size of the system in our applications ranges from N = 5, 000 for small space-time

test problems encountered in Section 3.4, to N = 300, 000 for some of the velocity-

pressure-stress formulation problems in Section 6.2. Only in the lower part of this

spectrum the direct solution techniques are feasible on contemporary computers. For

larger problems the memory limitations, as well as rapidly increasing computing time,

48



make iterative solution techniques a necessity. It is therefore tempting to abandon the

direct solver entirely, for the sake of code uniformity. Yet time and again, the direct

solvers prove to be a necessary tool in at least the development stage of a finite element

implementation. For example, to properly diagnose instabilities of a new variational

form, we may have to approach and pinpoint the borders of the non-convergence of

the non-linear iteration process. The robustness of the direct technique, which is

lacking from the practical iterative techniques, makes such studies of nearly ill-posed

problems possible. Iterative solvers are usually applied after the basic properties of

the system matrix, often predicted by analysis, are confirmed numerically with the

aid of a direct solver.

Of particular interest here is the LU decomposition of the matrix A, and the Crout

algorithm for achieving such decomposition. This method gives an option of efficient

solution of a system with multiple right-hand sides, yet having a low operations

count similar to the methods of Gauss and Gauss-Jordan. The multiple right-hand

side feature can be useful when the nonlinear iterations are performed with a frozen

left-hand side matrix to save matrix formation expense. In the LU decomposition the

matrix A is assumed to be a product of a lower triangular matrix L with an upper

triangular matrix U:

A = LU, (5.2)

so that the linear system may be written as:

Ax = (LU)x = L (Ux) = b. (5.3)

Once the decomposition (5.2) is computed, the solution of the linear system (5.1) can

be found in two steps:

y = L−1b, forward reduction, (5.4)

x = U−1y, backward substitution. (5.5)

While the direct solution methods offer much better tolerance of unfavorable prop-

erties of the linear system than their iterative counterparts, they are not immune to

49



failure. Aside from the obvious requirement of the non-singularity, matrix A may

also require pivoting to correct certain orderings of the equations, which otherwise

would lead to numerical overflows. In the case of the stabilized methods discussed

here, we are guaranteed that the symmetric part of the matrix A is positive definite.

The design of the stabilization parameters ensures that the positive definiteness con-

stant is greater than machine precision zero. Thus pivoting is not necessary in our

implementations.

Another important effect of the equation ordering is the bandwidth of the matrix

A. Figure 5.1 shows position of non-zero entries of a typical matrix arising from a

finite element discretization. It is natural to take advantage of the sparsity of such a

matrix by employing the skyline matrix storage scheme, such as the one described in

Section 11.2 of [36]. In that scheme, only the entries below the first non-zero entry in

each column of the upper-triangular part of A, and the entries to the right of the first

non-zero entry in each row of the lower-triangular part, are stored. Some zero entries

of the initial matrix A are still stored, as they will become non-zero, or filled-in in the

process of the LU decomposition. The resulting arrangement of stored and ignored

entries is often called a skyline profile of the matrix. The skyline profile of the

Figure 5.1. Typical finite element matrix: location of non-zero entries.

50



Figure 5.2. Typical finite element matrix: skyline profile.

example matrix used earlier is illustrated in Figure 5.2. Twice the average height of

the column in a skyline matrix is called the mean bandwidth. The storage required

for a skyline N × N matrix with a mean bandwidth b is Nb. Significant changes

in the bandwidth may result from simple reordering of the equations in the linear

system. It is therefore worthwhile to seek an equation numbering which produces

an optimal bandwidth for a given system. Normally, the initial equation numbering

will correspond to the node numbering produced by the mesh generator. When a

structured mesh generator is used, the equation ordering can be nearly optimal with-

out any additional effort. To illustrate, the system pictured in Figures 5.1 and 5.2

has been constructed from a quasi-structured finite element mesh. Unfortunately,

the more automatic the mesh generator becomes, the less control is exercised over

the node ordering. This may have a disastrous effect, as the mean-bandwidth b may

approach N for randomly ordered meshes, leading to unmanageable storage require-

ments. The remedy is to use an empirical node renumbering scheme as an adjunct

to the mesh generation step. The implementations described here which rely on an

automatic mesh generation, such as those used in Section 3.4, incorporate a reverse

Cuthill-McKee [42, 43] renumbering algorithm. Figure 5.3 shows the skyline profile

51



of a typical finite element matrix resulting from a discretization via an unstructured

grid. This example is taken from the fountain flow simulation in Section 3.4. The non-

zero entries, including the fill-in, account for 37% of the entire matrix. Application of

the reverse Cuthill-McKee reordering yields a matrix representing the same equation

system, but with dramatically different skyline profile, as shown in Figure 5.4. Now

the stored entries take up only 9% of the full matrix. Thus an important four-fold

reduction in storage requirement is accomplished.

Figure 5.3. Finite element matrix for an unstructured grid: skyline profile before

reordering.

5.2 Iterative Solution Techniques

In an effort to reduce the cost required to solve a large linear system, we often lower our

sights from the exact solution and become content with a solution which approximates

the exact one with a prescribed accuracy. Such approximation can often be found at

a greatly reduced expense. The iterative methods achieve this aim by constructing

52



Figure 5.4. Finite element matrix for an unstructured grid: skyline profile after

reordering.

a series of guesses approximating the true solution. The conjugate gradient (CG)

method has been extremely successful when applied to symmetric linear systems.

Discounting the truncation errors, this method is known to produce an exact solution

in at most N iterations, where N is the order of the linear system. For a review of

this and earlier iterative methods see, e.g., [44]. Although several generalizations of

the CG algorithm to non-symmetric linear systems exist, the Generalized Minimum

Residual (GMRES) method introduced by Saad and Schultz [45] has proven to be a

method of choice for many finite element researchers. The algorithm that follows was

introduced by Saad in [46].

5.2.1 GMRES Algorithm

The outline of the GMRES algorithm is shown in Box 5.1. Given the equation sys-

tem (5.1), an initial guess x0, and a preconditioner matrix M (to be discussed in the

next subsection), the process leads to an approximate solution vector x which mini-

53



for l = 1, . . . , nouter GMRES outer iterations

r0 := b −Ax0 compute initial residual

β := ‖r0‖2 compute initial residual norm

v1 = r0/β define first Krylov vector

for j = 1, . . . , m GMRES inner iteration

zj := M−1
j vj preconditioning step

w := Azj matrix-vector product

for i = 1, . . . , j Gramm-Schmidt orthogonalization

hi,j := (w,vi)

w := w − hi,jvi

hj+1,j := ‖w‖2

vj+1 := w/hj+1,j define next Krylov vector

define transformation matrix

H̄ := {hi,j} define reduced system matrix

y := argminŷ‖βe1 − H̄ŷ‖2 solve reduced system - see Box 5.2

x := x0 +
∑m

i=1 yizi form approximate solution

if ‖βe1 − H̄y‖2 ≤ ε exit convergence check

else x0 := x restart

Box 5.1. GMRES algorithm: control flow

mizes the residual of the initial system over the preconditioned Krylov subspace. Each

outer iteration involves solution of the linear system projected to a lower-dimensional

subspace. The successive outer iterations differ in the quality of the initial guess x0

only.

The inner iteration loop constructs the Krylov space and projects the original

equation system to this space, producing the matrix H̄ which is by definition upper-

Hessenberg. The modified Gramm-Schmidt orthogonalization of the basis vectors

is typically the most computationally expensive part of the algorithm for moderate

values of m.

The solution of the reduced system takes advantage of the upper-Hessenberg form

54



of H̄, as shown in Box 5.2. First the matrix H̄ is reduced to an upper-triangular

form by a series of Givens rotations. The optimal y is then found through a simple

back-substitution on the transformed system. Note that the operations enclosed in

frames in Box 5.2 are omitted from practical implementations.

p := βe1 initialize right hand side

for j = 1, . . . , m loop over columns of H̄

γ :=
√

h2
j,j + h2

j+1,j

c := hj,j/γ

s := hj+1,j/γ


hj,j := chj,j + shj+1,j = γ

hj+1,j := −shj,j + chj+1,j = 0
Givens rotation on H̄




pj := cpj + spj+1

pj+1 := −spj + cpj+1

Givens rotation on p




y1

...

ym




:=




h1,1 · · · h1,m

...
. . .

...

0 · · · hm,m




−1


p1

...

pm




back substitution

Box 5.2. GMRES algorithm: solution of the reduced system

It should be noted that the algorithm shown in Box 5.1 differs from the classical

GMRES in two ways. In the classical GMRES the Krylov space is continually ex-

panded until convergence is reached. This leads to excessive memory requirements,

and the advantage over a direct method of solution is lost. To alleviate this problem,

in a practical GMRES algorithm the dimension of the Krylov space m is limited a

priori, and if this dimension proves insufficient, the algorithm is restarted in the next

outer iteration. Alternatively, the orthogonalization process can be truncated to in-

clude only a given number of previous basis vectors, but this option is not pursued

here. Unfortunately, these modified methods are not guaranteed to converge, and

the choice of the restart frequency has to be made carefully, usually by numerical

experimentation. The current algorithm also differs from other GMRES derivatives

55



in that it allows variable preconditioning at each inner iteration. This feature enables

us to, e.g., freely mix two different but complementary preconditioners, as described

in [47].

In a more efficient (but less intuitive) version of the GMRES algorithm, the Givens

rotations are computed and applied to the reduced system even as it is being con-

structed. This modification gives us an option of discontinuing the inner GMRES

iterations when proper convergence criterion is met within the inner iteration loop.

We use here the fact, that after j rotations applied to the reduced system, the current

value of the norm ‖βe1 − H̄y‖2 is equal to the absolute value |pj+1|, as shown in [45].

The final algorithm adopted for present computations is thus presented in Box 5.3.

For equation systems stemming from the increment form (3.29) of the variational

formulation the initial guess x0 is normally taken as zero.

56



for l = 1, . . . , nouter GMRES outer iterations

r0 := b −Ax0 compute initial residual

β := ‖r0‖2 compute initial residual norm

v1 = r0/β define first Krylov vector

p := βe1 initialize right hand side

for j = 1, . . . , m GMRES inner iteration

zj := M−1
j vj preconditioning step

w := Azj matrix-vector product

for i = 1, . . . , j Gramm-Schmidt orthogonalization

hi,j := (w,vi)

w := w − hi,jvi

hj+1,j := ‖w‖2

vj+1 := w/hj+1,j define next Krylov vector

for i = 1, . . . , j − 1 previous Givens rotations on H̄
 hi,j := cihi,j + sihi+1,j

hi+1,j := −sihi,j + cihi+1,j

γ :=
√

h2
j,j + h2

j+1,j compute next rotation

cj := hj,j/γ; sj := hj+1,j/γ
 hj,j := γ

hj+1,j := 0
Givens rotation on H̄


 pj := cjpj

pj+1 := −sjpj

Givens rotation on p

if |pj+1| ≤ ε exit loop inner loop convergence check


y1

...

yj




:=




h1,1 · · · h1,j

...
. . .

...

0 · · · hj,j




−1


p1

...

pj




back substitution

x := x0 +
∑j

i=1 yizi form approximate solution

if |pj+1| ≤ ε exit loop outer loop convergence check

else x0 := x restart

Box 5.3. GMRES algorithm: modified control flow

57



5.2.2 Preconditioning

In contrast to the direct methods of solution, the iterative schemes can be extremely

sensitive to the particular numerical properties of the system matrix A, and GMRES

algorithm is no exception. The rate of convergence of Krylov subspace methods is

influenced by the condition number of the matrix A, as shown in [48]. The anal-

ysis contained therein indicates also that the order of convergence will degrade as

eccentricity of the ellipse containing the eigenvalues of the linear system decreases. In

practical terms, this measure is smaller for problems dominated by advection effects,

as indicated by the Reynolds number.

In most cases a preconditioning of the original system will be needed to achieve

reasonable convergence rates. Preconditioning involves a matrix M resembling in

some sense the matrix A, but whose inverse is easier to compute. Assuming constant

preconditioner matrix for the duration of the iterative process (as mentioned earlier,

variable preconditioning is also possible), the (right) preconditioned system becomes

AM−1 (Mx) = b. (5.6)

The closer the matrix AM−1 is to identity, the better convergence one may expect

from the iterative solver. Once the solution Mx of (5.6) is obtained, the solution of

the original system, i.e., the x vector itself, is easily computed.

Scaling of the linear system is a related concept. Here we construct a system

W−1/2AW−1/2
(
W1/2x

)
= W−1/2b. (5.7)

The matrix of the iteratively solved system becomes thus W−1/2AW−1/2. In contrast

with the one-sided preconditioning, the scaled matrix retains the symmetry charac-

teristics of the original system.

The simplest preconditioning method uses the diagonal part of the system matrix

M = diag A. Such preconditioning removes the worst effects of the large varia-

tions in the magnitude of diagonal entries, which for diagonally dominant matrices is

closely related to a high condition number. A diagonal scaling may be constructed

for positive definite matrices with W = diag A as well. Diagonal preconditioning

58



or scaling become less effective as the Reynolds number increases and off-diagonal

entries assume importance. The more advanced preconditioning techniques such as

the Element-By-Element (EBE) [49], Cluster-Element-By-Element (CEBE) [50, 51]

and CEBE/Cluster Companion (CEBE/CC) [47] methods will not be discussed here.

The iterative implementations used here use the diagonal scaling exclusively.

5.3 Parallel Implementation

The solution of the linear system (5.1) typically consumes most of the computational

resources in an implicit finite element program, and is also the most challenging part

from the point of view of parallel implementation. The direct solution techniques are

extremely hard to implement efficiently on massively parallel computers, except for

the special cases of, e.g., uniformly-banded matrix with very small bandwidth of 3 to

5 elements. Such matrices rarely appear in finite element codes. Efforts are underway

to create more general parallel direct solvers employing the MIMD paradigm which

by nature is more flexible than the SIMD model.

In contrast, the iterative solution techniques have proven significantly more adapt-

able to parallel architectures. The examples in Sections 6.1 and 6.2 employ a data

parallel implementation of the GMRES algorithm described previously. Building on

concepts introduced in Section 3.6, we now discuss aspects of this implementation.

Bulk of the computations in the GMRES algorithm shown in Box 5.3 will in-

volve EQN structures only. These include the set of Krylov vectors (original and

preconditioned) and the entries of the diagonal preconditioner. The computationally

intensive task of Gramm-Schmidt orthogonalization of the Krylov vectors involves

only on-processor operations and communication operations of the scan/reduce type.

The latter are performed very efficiently on the architectures used here, being in fact

one of the fastest inter-processor communication operations. The only interplay be-

tween the ELEM and EQN occurs when the matrix vector product is to be computed.

Such product involves a gather of EQN-level values into the ELEM dataset, followed by

a communication-free on-processor matrix-vector product, and finally a scatter back

59



into the EQN data set.

In the current implementation all variables related to the reduced system are

stored on the scalar front-end processor, and the factorization and back substitution

of that system is also performed in a scalar fashion. For moderate values of the

Krylov space dimension m ≤ 50, it was observed that the solution of the reduced

system consumed less than 3% of the time spent on the GMRES iterations, so the

use of the comparatively slow front-end processor here is not an impediment.

See also the Ph.D. thesis of Johan [52] for another discussion of data parallel

solution techniques and description of a memory-saving matrix-free GMRES imple-

mentation.

60


