
Chapter 2

Problem Statement

In this chapter we will state the governing equations under consideration, including

the Navier-Stokes equations for incompressible fluid flow. The equations governing

the mass and momentum balance are given in Section 2.1. An overview of constitutive

relations relevant to the current study is presented in Section 2.2.

2.1 Equations of Motion for Incompressible Fluid

Flow

We consider a viscous, incompressible fluid occupying at an instant t ∈ (0, T) a bound-

ed region Ωt ⊂ Rnsd , with boundary Γt, where nsd is the number of space dimensions.

The velocity and pressure, u(x, t) and p(x, t), are governed by the momentum and

mass balance equations:

ρ

(
∂u

∂t
+ u · ∇u− f

)
−∇ · σ = 0 on Ωt ∀t ∈ (0, T), (2.1)

∇ · u = 0 on Ωt ∀t ∈ (0, T), (2.2)

where ρ is the fluid density, assumed to be constant, and f(x, t) is an external, e.g.,

gravitational, force field. The closure is obtained with a constitutive equation relating

the stress tensor σ to velocity and pressure fields. These constitutive equations are

5

presented in the next section. When the Newtonian constitutive model is used, the

equations (2.1–2.2) are referred to as Navier-Stokes equations for an incompressible

fluid. Both the Dirichlet and Neumann-type boundary conditions are taken into

account, represented as:

u · ed = gd on (Γt)g ,d, d = 1 . . . nsd, (2.3)

n · σ · ed = hd on (Γt)h ,d, d = 1 . . . nsd, (2.4)

where (Γt)g ,d and (Γt)h ,d are complementary subsets of the boundary Γt, and {ed}nsd

d=1

is a basis in Rnsd . Note that the decomposition of Γt may be different for each of the

basis vectors ed. In practice, the bases often coincide with the local directions normal

and tangential to the boundary. In three dimensions, at each point of the boundary

Γt we define one unit vector normal to the surface, as well as two unit vectors defining

the plane tangent to the boundary. These vectors are denoted by n, t and b = t×n,

respectively. We now list some frequently encountered choices of boundary condition

sets:

• Inflow or no-slip boundary used to specify all components of the velocity, applied

at the inflow boundaries and solid obstacles and walls. Using the previously

introduced definitions, we can state that:

(Γt)inflow ⊂ (Γt)g ,n ∩ (Γt)g ,t ∩ (Γt)g ,b. (2.5)

• Symmetry boundary used to specify zero normal component of velocity and

zero shear stresses, applied at the boundaries which represent flow symmetry

lines. It can be symbolically written as:

(Γt)symmetry ⊂ (Γt)g ,n ∩ (Γt)h,t ∩ (Γt)h ,b. (2.6)

• Outflow boundary used to specify only the (zero or otherwise) stress compo-

nents, normally applied at outflow boundaries or free surfaces. It is also referred

to as the traction-specified boundary and can be defined as:

(Γt)outflow ⊂ (Γt)h,n ∩ (Γt)h,t ∩ (Γt)h,b. (2.7)

6

In the two-dimensional case only the n and t vectors are defined at the boundary.

The definitions (2.5), (2.6) and (2.7) still apply, with the boundary subsets (Γt)•,bbb

dropped.

The initial condition consists of a divergence-free velocity field specified over the

entire domain:

u(x, 0) = u0, ∇ · u0 = 0 on Ω0. (2.8)

From a numerical point of view the coupled equations (2.1) and (2.2) have a

number of interesting and challenging features. The momentum equation is non-linear

due to the presence of the advection term. Thus an iterative method, such as the

Newton-Rhapson algorithm, have to be used in the solution process. The momentum

equation has a variable character depending on the properties of the modeled fluid.

Its behavior ranges from diffusive (for highly viscous fluids and creeping flows), to

advective (for inviscid fluids or high-speed flows). Another important feature is the

presence of the incompressibility constraint (2.2) and related pressure variable playing

the role of a Lagrange multiplier enabling the flow to satisfy that constraint. Many

methods of numerically solving the incompressible Navier-Stokes equations exist – see

Gresho [1] for a review. Here we will apply the mixed formulations with the velocity

and the pressure acting as primary variables.

2.2 Constitutive Relations

The present work deals with both Newtonian and non-Newtonian fluids. The former

include water and most gases. The latter include fluids with a complicated molecular

structure, e.g., polymers, emulsions or rubber, and have a great deal of industrial

significance.

In the constitutive equation for a Newtonian fluid, the deviatoric stress (also

referred to as extra-stress or non-isotropic stress component) is assumed to be pro-

portional to the fluid rate of strain tensor which is defined as:

ε(u) =
1

2

(
∇u + (∇u)T

)
. (2.9)

7

Under this assumption the stress tensor for a fluid with kinematic viscosity µ is defined

as follows:

σ = −pI + T,

T = 2µε(u). (2.10)

Modifications of the basic Newtonian relation (2.10) include shear-thickening, as well

as shear-thinning culminating in plasticity.

Viscoelastic fluids exhibit dependence of the stress not only on the instantaneous

rate of strain, but also on the strain history. For the upper-convected Maxwell fluid,

also called the Maxwell-B fluid, the constitutive equation acquires an evolutionary

character:

σ = −pI + T,

T + λ
5
T = 2µε(u), (2.11)

where the
5
T denotes an upper-convected derivative:

5
T =

∂T

∂t
+ u· ∇T−

(
∇uT + T (∇u)T

)
. (2.12)

The upper-convected Oldroyd model, also known as the Oldroyd-B model, includes

the Newtonian and Maxwell models, and covers the cases in which an elastic fluid

obeying the Maxwell relation is mixed with a fluid governed by a Newtonian law. This

corresponds to a situation in which an elastic polymer with viscosity µ1 is dissolved

in a viscous solvent with viscosity µ2:

σ = −pI + T,

T = T1 + T2,

T1 + λ
5
T1 = 2µ1ε(u),

T2 = 2µ2ε(u),

µ1 + µ2 = µ. (2.13)

The Maxwell fluid is extremely difficult to handle numerically, and this point is

expanded upon in Section 4.3. The main feature of (2.11) is the convective character

8

of the stress evolution equation. The difficulty is lessened considerably by even a

small addition of the Newtonian solvent in an Oldroyd-B fluid. Even so, one may

expect the problems normally associated with an advective systems to arise when

discretization of the constitutive equation is performed. Additional feature introduced

by the viscoelastic equations is their non-linearity. From the numerical point of view,

that property is a strong argument for solving the equations for stress and velocity in

a coupled manner. The Newtonian model for the stress is easily incorporated into the

momentum equation (2.1) itself to yield some of the most commonly seen forms of

the Navier-Stokes equations. The viscoelastic models on the other hand, necessitate

treatment of the extra stress as a separate variable.

9

Chapter 3

Space-Time Velocity-Pressure

Formulation

In this chapter a space-time velocity-pressure formulation is presented. Its inherent

ability to handle arbitrary deformations of the physical domain makes it an attractive

alternative to existing methods. A general background on the established numerical

methods dealing with free surface problems is given in Section 3.1. The present

method is introduced in Section 3.2, and further discussed in Sections 3.3 and 3.4.

The chapter is concluded with Sections 3.5 and 3.6 covering the implementational

issues. The discussion in this chapter is restricted to fluids governed by a Newtonian

constitutive law.

3.1 Background

When faced with the fluid dynamics problems involving free surfaces, moving inter-

faces and deforming domains in general, a decision tree regarding the choice of a

numerical method shown in Figure 3.1 may be the one to follow.

The Marker-And-Cell (MAC) method developed by Harlow and Welch, and de-

scribed in an exhaustive report [2], has stood its own against the more established

finite element and finite difference approaches in this particular area. The numerous

10

x

Marker-And-Cell Finite Element

Lagrangian Lagrangian-Eulerian

ALE Space-Time

Continuous-In-Time Discontinuous-In-Time

Figure 3.1. Numerical methods applicable to problems involving deforming domains:

author’s decision tree (see text for explanation of terms).

examples presented in [2] attest to the method’s extraordinary flexibility. The con-

cept of a mesh covering the maximum possible domain, but with computations being

performed only for the cells containing marker particles, leads to efficient implemen-

tations. Since the tracer particles are indistinguishable from one another, the joining

and separation of fluid parts – a source of mesh generation nightmares in the finite

difference/element approaches – can be effortlessly simulated. Yet the MAC method

is not free of shortcomings. Various stress effects at the free surface, such as surface

tension and contact angles, have been notoriously difficult to incorporate, requiring

complex surface fitting techniques such as those introduced in [3]. The method can

suffer from stability problems which may be difficult to detect. That is, apparently

reasonable particle distribution may be an artifact of gross approximation errors.

Some modification were proposed to stabilize the MAC method in [4]. Another vari-

ation of the MAC concept replaces the discrete marker particles with a continuous

fractional volume of fluid (VOF) function, as described in [5].

The extensive pool of knowledge accumulated about the finite difference and finite

element methods in the context of fixed domain problems makes these more standard

approaches also attractive. Here, we will concentrate on the finite element approach.

11

It should be noted that some of the finite element methods reviewed in this section

possess a finite difference counterpart. For a finite element method to be applicable to

problems involving deforming domains, it needs to have one important feature which

may be omitted in the case of problems involving fixed domains only. The necessity

of accurately following the deforming boundary of the domain requires some degree of

Lagrangian description to be present in the formulation, at least in the vicinity of the

boundary. Since the use of a Lagrangian viewpoint is unavoidable, some researchers

consider fully Lagrangian formulation for the entire domain [6, 7]. The simplicity

of such solution is offset by several difficulties. The flow field in the interior of the

domain may exhibit a large amount of circulation, such as local vortices, which is often

unrelated to the motion of the boundary. The fully Lagrangian approach may result in

unnecessary mesh distortion and tangling in such interior regions, even for moderate

or null displacements of the boundary. On the other hand, internal circulation and

shear are handled without difficulty by an Eulerian description.

These facts provided a strong motivation for development of methods capable

of combining the Lagrangian and Eulerian approaches in the same domain. The

Arbitrary Lagrangian-Eulerian (ALE) formulation was initially stated in the finite

difference context by Hirt [8], and eventually adopted also in the finite element com-

munity – see [9,10] and references contained therein for a detailed description. In the

modern ALE approach, velocities of the nodes of the computational mesh explicitly

enter the momentum equation, which is written over a reference domain. This domain

may or may not coincide with either material or spatial domains. Nodal velocities

may be either prescribed a priori, or be a function of the fluid velocity (most notably

at the free surface). The need for including three different coordinate systems in the

formulation makes it quite complex and lowers its appeal. Nevertheless, the ALE

method has been used to solve a number of interesting problems, including those

quoted in [10] and [11].

Another avenue was pioneered by Jamet and Bonnerot [12, 13] as a means of so-

lution of Euler equations and Stefan-type problems. The method uses finite element

discretization in both space and time to automatically account for the deformation

12

of the computational domain. This approach was later applied to shallow water

equations by Lynch and Gray [14] and flows of incompressible fluids by Frederik-

sen and Watts [15]. Improving on the continuous-in-time interpolations used in the

applications mentioned above, Jamet [16] proposed the use of discontinuous-in-time

functions for a model parabolic problem. Here for the first time the numerical method

was presented together with analytic proofs of stability and estimates of accuracy.

In a parallel development, the discontinuous-in-time space-time methods have

been gaining popularity for fixed domain problems, as an alternative to the more

common semidiscrete (finite elements in space, finite differences in time) approach.

The advantages, such as potential for selective temporal refinement and possibility

of obtaining rigorous convergence predictions, were discussed by Hughes and Hul-

bert in [17] in the context of elastodynamics. Considerable attention was given to

the space-time method for fixed domains by Hansbo et al. [18]. Their characteristic

streamline diffusion method takes advantage of the possibility of unstructured mesh

across the time step to reduce advective effects by moving interior nodes approxi-

mately along the characteristic directions, followed by remeshing.

The potential of the discontinuous-in-time space-time formulation as a means

of simulating flows of fluids in a deforming domain has been exploited in [19, 20].

Later applications of the technique are described in [21,22]. It has also been used to

conduct a large-scale studies of incompressible flows past oscillating airfoils and cylin-

ders [23,24]. More recently, the same method, with a particular mesh moving scheme

conforming to the characteristic streamline diffusion ideology, has been applied to de-

forming domain problems by Hansbo [25]. Finally let us note that similar approach

can be equally successful for compressible flow simulation [26]. The remainder of this

chapter recapitulates the method introduced in [19, 20], and discusses mesh motion

and related aspects. The discontinuous-in-time space-time technique considered here

may be expected to retain the detailed accuracy analyses carried out for its fixed

domain counterpart, while providing an extremely elegant way of accounting for the

displacements of the reference domain, i.e., the finite element mesh.

Note that in addition to the direct modeling of the governing equations, the free

13

-

6

x

t

�
�
�
�

D
D
D
D

�
�
��

�
�

�
�

�
�
�
�

QnPn Pn

Ωn

Ωn+1

tn

tn+1

Figure 3.2. Space-time discretization: concept of a space-time slab.

surface flows are amenable to treatment with specialized methods, which may use

specific assumptions about the flow to produce an approximate set of governing equa-

tions. As is the case with the Shallow Water Equations (SWE) [27], this modified

problem is often significantly simpler to model than the original one. The simplified

problem is in turn solved with a suitable numerical method. These approximations

will not be considered here.

3.2 Variational Formulation

In order to construct the finite element function spaces for the space-time method, we

partition the time interval (0, T) into subintervals In = (tn, tn+1), where tn and tn+1

belong to an ordered series of time levels 0 = t0 < t1 < · · · < tN = T . Let Ωn = Ωtn

and Γn = Γtn . We will define the space-time slab Qn as the domain enclosed by the

surfaces Ωn, Ωn+1, and Pn, where Pn is the surface described by the boundary Γt as t

traverses In. These concepts are sketched in Figure 3.2. As it is the case with Γt,

surface Pn can be decomposed into (Pn)g and (Pn)h with respect to the type of

boundary condition (Dirichlet or Neumann) being applied. For each space-time slab,

we define the following finite element interpolation function spaces for the velocity

14

and pressure:

(Sh
u)n =

{
uh | uh ∈

[
H1h(Qn)

]nsd
,uh .

= gh on (Pn)g
}

, (3.1)

(Vh
u)n =

{
uh | uh ∈

[
H1h(Qn)

]nsd
,uh .

= 0 on (Pn)g
}

, (3.2)

(Sh
p)n = (Vh

p)n =
{
ph | ph ∈ H1h(Qn)

}
. (3.3)

Over the element domain, the interpolation is constructed by using first-order poly-

nomials in space and, depending on our choice, zeroth- or first-order polynomials in

time. Globally, the interpolation functions are continuous in space but discontinuous

in time. However, for two-liquid flows, the solution and variational function spaces

for pressure should include the functions which are discontinuous across the inter-

face. It should be remarked that when required, the method can employ higher order

interpolation functions in both space and time, to provide necessary accuracy.

The stabilized space-time formulation for deforming domains can be written as

follows: given (uh)−n , find uh ∈ (Sh
u)n and ph ∈ (Sh

p)n such that ∀wh ∈ (Vh
u)n,

∀qh ∈ (Vh
p)n:∫

Qn

wh · ρ
(

∂uh

∂t
+ uh · ∇uh − f

)
dQ +

∫
Qn

ε(wh) : σ(ph,uh)dQ

+
∫

Qn

qh∇ · uhdQ +
∫
Ωn

(wh)+
n · ρ

(
(uh)+

n − (uh)−n
)
dΩ

+
(nel)n∑
e=1

∫
Qe

n

τMOM

1

ρ

[
ρ

(
∂wh

∂t
+ uh · ∇wh

)
−∇ · σ(qh,wh)

]

·
[
ρ

(
∂uh

∂t
+ uh · ∇uh − f

)
−∇ · σ(ph,uh)

]
dQ

+
(nel)n∑
e=1

∫
Qe

n

τCONT∇ ·wh ρ∇ · uhdQ =
∫
(Pn)h

wh · hhdP. (3.4)

The notational conventions used in (3.4) are shown below:

(uh)±n = lim
ε→0

u(tn ± ε), (3.5)∫
Qn

. . . dQ =
∫

tn

∫
Ωh

t

. . . dΩdt, (3.6)∫
Pn

. . . dP =
∫

tn

∫
Γh

t

. . . dΓdt. (3.7)

15

The solution to (3.4) is obtained sequentially for all space-time slabs Q1, Q2, . . . , QN−1.

The computations start with

(uh)+
0 = u0. (3.8)

In the variational formulation given by (3.4), the first three terms of the left hand

side, together with the right hand side, constitute the standard Galerkin formulation

of the problem. The fourth integral enforces, in a weak sense, the continuity of

the velocity in time over the lower boundary Ωn of the space-time slab Qn. The

fifth term in (3.4) is a least-squares form of the momentum equation added to the

formulation. This term provides crucial stability characteristics and will be discussed

in more detail, including the definition of τMOM, in the following section. At high

Reynolds numbers, the stability is further enhanced by incorporating the sixth term

into formulation (3.4), which includes a least-squares form of the continuity equation.

The coefficient τCONT will be defined in the next section as well.

The deformation of the mesh is reflected in the deformation of space-time ele-

ments, and affect directly the computation of the transport terms. This effect will be

illustrated for a typical deformed space-time element shown in Figure 3.3. Let ξ and

-

6

x

t

�
�
�
�

D
D
D
D

�
�
�
�
�

�
�
�

�
�
�
�

�
�
�
�

D
D
D
D

D
D
D
D

�
�
�
�

�
�
�
�

�
�
�
�

D
D
D
D

�
�

�
�

,
,

,
,,

�
�

�
�

�
�

�
�

�
�
��

�
�
��

�
�
�
�
�
�� θ

-
ξ

tn

tn+1

Figure 3.3. Space-time discretization: deformed element.

θ serve as a set of standard reference coordinates for that element. In the special,

16

yet common, case when the θ = const levels coincide with the t = const levels, the

Jacobian matrix of the transformation between the reference and physical domains

can be written as:

∂(x, t)

∂(ξ, θ)
=


 ∂x

∂�
∂x
∂θ

0 ∂t
∂θ


 , (3.9)

and its inverse as:

∂(ξ, θ)

∂(x, t)
=


 ∂�

∂x
∂�
∂t

0 ∂θ
∂t


 =


 ∂�

∂x
−vh · ∇ξ

0 2
∆t


 , (3.10)

where ∆t = tn+1 − tn and vh is the local mesh velocity defined as:

vh =
∂x

∂t

∣∣∣∣∣
θ=const

. (3.11)

Now the transport term can be computed as:

∂uh

∂t
+ uh · ∇uh =

∂uh

∂θ

∂θ

∂t
+

∂uh

∂ξ

∂ξ

∂t
+ uh · ∇uh

=
∂uh

∂θ

2

∆t
− ∂uh

∂ξ
vh · ∇ξ + uh · ∇uh

=
∂uh

∂θ

2

∆t
+
(
uh − vh

)
· ∇uh. (3.12)

This is equivalent to modifying the advective velocity by subtracting the mesh veloc-

ity. If the element does not deform, as in a fully Eulerian description, the ∂�
∂t

term

vanishes and the transport terms retain full advective velocity. On the other hand,

in an approximately Lagrangian description, the node movement follows the fluid

velocity field, and the effective advection velocity
(
uh − vh

)
is close to zero.

3.3 Stabilization Details

The mixed Galerkin formulation, i.e., formulation (3.4) with τMOM = 0 and τCONT = 0,

suffers from two stability problems. The first of the two is the difficulty encountered

when one attempts to obtain numerical solution to advection-dominated problems

17

with a pure Galerkin method. It is now well known that the Galerkin method ap-

plied to an advection-diffusion problem (or central difference approximation in the

finite difference context) exhibits a level of diffusion lower than the physical problem.

Defining a numerical diffusion as the diffusion change from the actual to the approxi-

mated system, we speak of a negative numerical diffusion of a Galerkin approximation.

If not overcome by the sufficiently high level of actual diffusion in the problem, the

Galerkin approximation may acquire negative total diffusion, producing spurious and

growing oscillations, appearing in the vicinity of boundary layers and polluting the

entire domain. The situation may be remedied either by dramatic mesh refinement,

or by adding a certain amount of artificial diffusion to the formulation. The second

option is generally accepted today, since methods exist to determine nearly optimal

artificial diffusion, and moreover, to apply it properly in multi-dimensional advective

systems. The streamline upwind/Petrov-Galerkin (SUPG) technique introduced by

Brooks and Hughes [28] has been widely accepted in fluid dynamics community, and

is a part of the stabilization terms of (3.4). See [28] also for a more detailed discussion

of streamline upwind methods, culminating in SUPG.

The second stability problem is unique to mixed methods, and manifests itself for

only certain combinations of the interpolations for the velocity and pressure fields.

Simply stated, the danger stems from the fact that the pressure field enters the

mixed Galerkin variational formulation (3.4 with τMOM = 0) only through the term∫
Qn
∇ · whphdQ. For not sufficiently rich (Vh

u)n, spurious pressure fields, or modes,

may “slip through” a net of velocity weighting functions and remain undetected by

the variational formulation. The presence of spurious pressure modes is precluded by

the inf-sup condition, due to Babuška and Brezzi, which may be written as follows:

sup
06=u∈(Sh

u)n

(∇ · u, p)

‖ u ‖1 ≥ C ‖ p ‖0, p ∈ (Sh
p)n. (3.13)

Unfortunately, many desirable combinations do not satisfy (3.13), and efforts have

been made to circumvent the inf-sup condition by modifying the Galerkin formu-

lation itself. This has been accomplished for the Stokes problem by Brezzi and

Pitkäranta [29]. A consistent approach for the Stokes problem was introduced in [30].

18

Here the weighted residual character of the Galerkin formulation was preserved, but

the weighting functions themselves were modified. A generalization of that work for

the finite Reynolds number flows led to pressure stabilized/Petrov-Galerkin (PSPG)

formulation developed by Tezduyar et al. [31]. As seen in [31], the PSPG formulation

has been successfully applied to different equal-order interpolations in the context of

Navier-Stokes equations.

The Galerkin/Least-Squares technique used here combines the SUPG and PSPG

stabilizations in one conceptually simple term. As seen in (3.4), the addition to the

weighting function has the form of the variation of the momentum equation.

The τCONT-term has been proposed by Franca and Hughes [32], and provides sta-

bility to the velocity field at high Reynolds numbers. Such term can dramatically

enhance the convergence of the nonlinear iterative algorithm, without compromis-

ing the consistency of the original method. The standard stability analysis for the

advection-diffusion equation with SUPG or Galerkin/Least-Squares stabilization re-

lies on the divergence-free property of the advection velocity field. In general, the

velocity field obtained by solving (3.4) will become free of divergence only in the

h → 0 limit, where h is the mesh parameter. This potential for instability is elimi-

nated with the addition of the consistent τCONT-term to the formulation.

3.3.1 Parameter Design

A parameter τMOM designed specifically for use with bilinear interpolations has been

given in, e.g., [19], and is repeated here:

τMOM =


(2

∆t

)2

+

(
2|uh|2

he

)2

+

(
4ν

h2
e

)2

−1/2

, (3.14)

or

τMOM =


(2|uh|2

he

)2

+

(
4ν

h2
e

)2

−1/2

, (3.15)

in the steady-state case. Here |uh|p =
(∑nsd

d=1 |uh
d|p
)1/p

is the pointwise velocity norm,

he is the element length and ν = µ/ρ is the kinematic viscosity. The second de-

19

sign (3.15) coincides in the advective limit with a definition used earlier for non-

space-time formulations (see e.g. [31]):

Ree =
|uh|he

2ν
,

ξ(Ree) =


 Ree/3, Ree < 3

1, Ree ≥ 3
,

τMOM =
he

2|uh|2 ξ(Ree), (3.16)

where Ree is an element level Reynolds number.

Another possible definition of τMOM, designed to be applicable to any order of

interpolation, follows the definition given in [33], and may be summarized as follows:

Ree =
me|uh|2he

4ν
,

ξ(Ree) =


 Ree, Ree < 1

1, Ree ≥ 1
,

τMOM =
he

2|uh|2 ξ(Ree),

me = min
{

1

3
, 2CI

}
,

CI

(nel)n∑
e=1

h2
e‖∇ · ε(wh)‖20,e ≤ ‖ε(wh)‖20 ∀wh ∈ (Vh

u)n. (3.17)

Constant me accounts for different orders of interpolation and depends on the inverse

estimate constant CI . For bilinear velocity interpolations, CI = 0 and me = 1/3.

This design will be used with the velocity-pressure-stress formulation examples in

Chapter 6.

The definition of τCONT is the same as the one introduced in [34]:

τCONT = ϑ|uh|2heξ(Ree), (3.18)

with Ree and ξ(Ree) defined as in (3.16) if τMOM definitions (3.14) or (3.16) are

used. Alternatively we define Ree and ξ(Ree) as it is done in (3.17) if that is the

definition used for τMOM. Here ϑ is a positive parameter, usually taken as unity. The

definition (3.18) is a smoothed version of the parameter initially used in [33].

20

3.3.2 Low Order Elements

Special remarks will apply to the formulation (3.4) when it is used with first-order

interpolation functions for the velocity field. Although the formulation appears to

be consistent, the least squares stabilization terms involve an unmodified form of the

momentum equation, and hence second derivatives of the velocity field. These deriva-

tives vanish identically for linear (triangle) velocity interpolations, and are incomplete

for bilinear (quadrilateral) velocity elements. Thus, while the full viscous momentum

equation is represented in the Galerkin part, only an inviscid version of it is present in

the least-squares contribution. The imbalance created by the absence of the viscous

terms will be normally absorbed by the pressure and convective terms. This effect is

hardly noticeable for the τMOM definitions in this section. But in the space-time for-

mulation, the presence of the time evolution terms in the least-squares contribution

may lead to a non-negligible and surprising phenomenon. When a steady flow of a

fluid is computed with a time-dependent procedure, the convergence is achieved when

(uh)−n+1 = (uh)−n , yet (uh)−n need not be equal to (uh)+
n . When this criterion is used,

there exists the possibility of a non-zero ∂uh/∂t and a corresponding non-zero jump-

term. Indeed, the already mentioned inconsistency seen in the least-squares form of

the momentum equation, will feed such saw-tooth pattern in the time behavior of the

solution. Moreover, the smaller the time step, the larger part of the inconsistency

will be absorbed by the ∂uh/∂t within a space-time slab, instead of being absorbed

by the remaining spatial (pressure and convective) terms of the momentum equation.

More importantly, by varying the time step size, the weighting expression ∂wh/∂t

is also changed, leading to relative shifts in weight between the Galerkin and Least-

Squares forms of the momentum equation. This accounts for the visible dependence

of the steady-state solution on the time step, when the bilinear velocity interpolation

is used. Since the stress-velocity-pressure formulation discussed in Chapter 4 is free

of inconsistency even for lowest order interpolations, it is expected to be also free of

such unwanted effects in its space-time implementation. Of course that formulation

also involves extra cost compared to the velocity-pressure formulation.

21

Another low order element anomaly appears in the context of temporal discretiza-

tion. In the applications of space-time methods to the fixed domain problems, a

satisfactory solutions may be obtained with the use of constant-in-time interpolation

functions. When such interpolation is applied to the deforming domain problems, it

falls into the subparametric category, which may invalidate some of the assumptions

of convergence analysis, such as completeness of the shape function sets.

3.4 Moving Boundary Treatment

Similarly to other Lagrangian-Eulerian formulations, the current formulation gives

us nearly complete freedom of the mesh movement within the domain, and to some

extent also at the boundary. In the particular case of free surfaces and moving no-flux

interfaces, the only requirement for the velocity v of the nodes on that boundary is

v·n = u·n, i.e., the normal components of the nodal and fluid velocities must match.

The tangential component of v remains arbitrary, with some common choices depicted

in Figure 3.4. Boundary nodes can be made to move in a prescribed direction (e.g.

horizontal or vertical), in a direction normal to the free surface, or in the direction of

local fluid velocity vector. In the last case we obtain a locally Lagrangian description

at the boundary. In all moving boundary problems described here, the node motion

in the normal direction only is selected. Movement of the mesh inside the domain is

the subject of the next subsection.

HHHHHHHH

HHHHHHHH

HHHHHHHH

�����*

�����*

�����*

�
�
�
��

�
�
�
��

�
�
�
��

u u u,v
u·n u·nu·n,v

t t t

6

�
�
���

�����*

v

Figure 3.4. Mesh moving options at the free surface: prescribed direction (left),

normal direction (center) and local velocity direction (right).

22

3.4.1 Mesh Moving Options

In problems involving mild or cyclic deformations only, the initial mesh can be

designed to provide the necessary flexibility, and remain topologically unchanged

throughout the simulation. In problems involving large deformations, on the other

hand, it may be necessary to introduce new meshes during the course of the compu-

tations, and project the solution from the old set of nodes to the new one. There are

situations in which the deformation of the mesh is known in advance, either precisely,

or approximately. Such is the case when computing flows around bodies moving in a

prescribed manner. Thus the initial mesh can be made to absorb certain types of de-

formations without significant element distortion or the need for remeshing, as shown

schematically in Figure 3.5. This approach is successfully used in conjunction with

-

6

x

t

�
�
�
�

D
D
D
D

�
�
�
�
�

�
�
�

�
�
�
�

�
�
�
�

D
D
D
D

D
D
D
D

�
�
�
�

�
�
�
�

�
�
�
�

D
D
D
D

�
�

�
�

,
,

,
,,

�
�

�
�

�
�

�
�

Figure 3.5. Mesh moving options: movement with no remeshing.

the present formulation to compute flows past oscillating cylinders and pitching air-

foils (see [23,24]). In general, such techniques will be successful when the deformation

of the domain is either cyclic or tends to a steady-state.

In many cases, however, the distortion of the domain is irregular or unpredictable,

and therefore the design of an explicit mesh moving method is difficult. More flexible

techniques are being developed, in which the domain is treated as an elastic solid

23

under given boundary displacements [22]. The movement of the nodes is determined

by solving the elasticity equations to obtain the displacement field in the interior of

the domain. The shape of the critical elements can be improved by adjusting the

(fictitious) material properties for these elements. Only the initial mesh needs to be

explicitly generated, possibly by an automatic mesh generator.

Still, in some other cases, dramatic changes in the shape and volume of the domain

may cause both of the aforementioned techniques to break down. Our approach here

is to use an automatic mesh generator, the INRIA-developed Emc2 [35], to discretize

anew the domain deformed during the previous time step, as shown in Figure 3.6.

The solution has to be projected to the new mesh via an interpolation technique. The

-

6

x

t

�
�
�
�

D
D
D
D

�
�
�
�
�

�
�
�

�
�
�
�

�
�
�
�

D
D
D
D

D
D
D
D

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

D
D
D
D

�
�
�
�

�
�

�
�

�
�

�
�

�
�
�
�

�
�
�
�

�
�
�
�

Figure 3.6. Mesh moving options: movement with discrete remeshing.

jump term integral in (3.4) can also serve as a projection mechanism. The ability

of this scheme to handle arbitrary domains is offset by the diffusive effect of the

projection, which grows with increasing time resolution, as the number of projections

is increasing with decreasing time step size.

The ideal approach should integrate the elastic treatment of the interior domain,

with infrequent remeshing when unacceptable mesh distortions are reached. It is also

desirable to isolate, if possible, a section of the domain in which remeshing should

be avoided, and preserve the mesh in this region even as the mesh in the rest of the

24

computational domain undergoes restructuring and data there is projected. It is clear

that the linear projection will not affect a flow field with uniform velocity or uniform

shear rate. On the other hand the adverse effects of projection are most pronounced

in regions where the shear rate varies rapidly e.g. in boundary layers or internal

shear layers. Sometimes, the location of such regions is predictable. For example,

computation of fluid flow around a solid object might involve a structured, stiff mesh

fragment around the object which is never subjected to remeshing and the associated

projection process, thus preserving the flow field within its boundary layer. Outside

of this small area, even frequent remeshing may be allowed, as it will not degrade the

quality of a slowly varying flow field.

Yet another possibility is available to us with the use of a completely unstructured

mesh within the space-time slab. In the approaches discussed so far, the space-time

mesh was formed by a straightforward extension of the spatial mesh in the time

dimension. Such strategy yields three-dimensional six-node or eight-node bricks for

two-dimensional problems discretized with triangular or quadrilateral elements, and

four-dimensional bricks for three-dimensional problems. The important point is that

the mesh generation burden is restricted to the spatial domain only. With nsd-simplex

mesh in the spatial domain, it is also possible to connect two dissimilar meshes at the

two time levels of a space-time slab with an unstructured (nsd+1)-simplex mesh. The

remeshing in this case is achieved in a continuous manner, as shown in Figure 3.7.

Unfortunately with the present state of affairs in the area of mesh generation, this

strategy is not yet viable for three-dimensional problems. The mesh motion with no

remeshing (Figure 3.5) is utilized in the sloshing problem in Section 6.1. To illustrate

the discrete remeshing strategy (Figure 3.6) we discuss now a simple problem involving

large deformation of the domain and its boundary.

Fountain Flow

A flow from a fountain has been one of the numerous problems solved in [2] with the

MAC method, and recently used by Hansbo [25]. In this experiment, the fluid enters

a short vertical pipe as shown in Figure 3.8. The dimensions of the pipe are W = 1.0

25

-

6

x

t

�
�
�
�

D
D
D
D

�
�
�
�
�

�
�
�

�
�
�
�

\
\

\
\

�
�
�
�

T
T

T
T

�
�
�
�

,
,

,
,,

�
�

�
�

L
L

L
L

�
�
�
�

T
T

T
T

D
D
D
D

�
�
�
�

\
\

\
\

�
�
�
�

L
L

L
L

�
�
�
�

T
T

T
T

�
�
�
�

�
�

�
�

�
�
�
�

�
�
�
�

D
D
D
D

�
�

�
�

�
�
�
�

�
�

�
�

�
�
�
�

L
L

L
L

�
�
�
�

�
�
�
�

Figure 3.7. Mesh moving options: movement with continuous remeshing.

?

g

666666666

W

D

Uin

Figure 3.8. Fountain flow: domain description.

and D = 2.0. The gravitational acceleration is taken as g = 1.0, density as ρ = 1.0

and the fluid is assumed to be inviscid ν = 0. The pipe walls admit slip, while the

top boundary is traction-free and is moving with the fluid in the direction normal to

the surface. The time step is chosen as ∆t = 0.05. The fluid enters the domain at the

bottom of the pipe with vertical velocity Uin = 1.0. Subsequently, it overflows the pipe

walls and falls down under the influence of gravity forming symmetric tails extending

26

downwards. After the initial development phase, the pressure inside the pipe reaches

a new hydrostatic steady state, and tends to zero in the fountain tails. Also the

shape of the domain in the vicinity of the pipe outlet achieves a time independent

form. The evolution of the domain and its mesh is shown in Figures 3.9 and 3.10.

Corresponding pressure fields are shown in Figures 3.11 and 3.12. The number of

elements grows from the initial 614 to 2,126 at t = 6.0.

27

Figure 3.9. Fountain flow: finite element mesh at t = 0.0, 1.0 (top row), t = 2.0, 3.0

(middle row) and t = 4.0, 5.0 (bottom row).

28

Figure 3.10. Fountain flow: finite element mesh at t = 6.0.

29

Figure 3.11. Fountain flow: pressure field at t = 0.0, 1.0 (top row), t = 2.0, 3.0 (middle

row) and t = 4.0, 5.0 (bottom row).

30

Figure 3.12. Fountain flow: pressure field at t = 6.0.

31

3.4.2 Surface Tension

The surface tension effects can play an important role in free-surface flows. Although

the particular examples discussed in this thesis do not involve surface tension as a

significant factor, other applications of the current method [22] include surface tension

effects.

The surface tension mechanism is based on a change in the normal stress compo-

nent at a free surface (or at an interface between two fluids). In two dimensions, this

change is related to the radius of curvature as follows:

n · σ · n =
γ

R
on (Γt)free. (3.19)

Here γ is the surface tension coefficient and R is the radius of curvature, defined to

be positive when n points towards the center of curvature. Condition (3.19) is par-

ticularly simple to impose as it falls into the category of natural boundary conditions

for the problem (2.1). In the formulation given by (3.4) we add a term∫
(Pn)free

wh · n γ

R
dP, (3.20)

where (Pn)free is the part of the space-time slab surface Pn, traced by the moving

boundary (Γt)free.

3.5 Matrix Form

In order to discuss the implementational aspects, we need to describe in more de-

tail the process of forming and solving the linear equation system from the abstract

variational form (3.4).

To simplify the notation, we introduce a composite trial solution

ūh =
{
ūh

i

}
i=1,ndof

= ūh
i ēi, ūh

i =


 uh

i 1 ≤ i ≤ nsd

ph i = nsd + 1
, (3.21)

where ndof = nsd +1 is the number of degrees of freedom per node. In the presence of

Dirichlet boundary conditions, the composite solution is decomposed into its known

32

and unknown parts

ūh = v̄h + ḡh, v̄h = v̄h
i ēi, ḡh = ḡh

i ēi, (3.22)

with

v̄h
i =


 vh

i 1 ≤ i ≤ nsd

ph i = nsd + 1
, ḡh

i =


 gh

i 1 ≤ i ≤ nsd

0 i = nsd + 1
. (3.23)

Then the composite solution is represented in terms of basis (shape) functions:

v̄h
i =

∑
A∈η−ηgi

NAdiA, ḡh
i =

∑
A∈ηgi

NAgiA, (3.24)

where η and ηgi
represent the set of all nodes, and the set of Dirichlet nodes for the

degree of freedom i, respectively. Similar representation applies to the composite

weighting function:

w̄h = w̄h
i ēi, w̄h

i =
∑

A∈η−ηgi

NAciA. (3.25)

The variational formulation (3.4) may be written in abstract form

a(w̄h, v̄h + ḡh) = (w̄h, h̄
h
)Pn , (3.26)

where h̄
h

is hh extended to the composite solution space in a manner analogous

to (3.23)2. Because of nonlinearity of the functional a(· , ·) in some of the components

of the second vector argument, we apply an iterative Newton-Rhapson technique to

obtain corrections to the current value v̄h∗:

v̄h = v̄h∗ + ∆v̄h, a(w̄h, v̄h + ḡh) = a(w̄h, v̄h∗ + ḡh) + aI(w̄
h, ∆v̄h),

(3.27)

where aI(· , ·) is bilinear. Note that for a linear problem (e.g., Stokes equation),

aI(· , ·) = a(· , ·). From (3.27) follows a decomposition of the nodal unknown vector

introduced in (3.24):

djB = d∗
jB + ∆djB, (3.28)

33

and at each nonlinear iteration step we have to solve the following equation:

ndof∑
j=1


 ∑

B∈η−ηgi

aI(NAei, NBej)∆djB


 = (NAei, h̄

h
)Pn − a(NAei, v̄

h∗ + ḡh), (3.29)

A ∈ η − ηgi
, 1 ≤ i ≤ ndof .

Equation (3.29) may be written in a matrix form as follows:

K∆d = F, K = [KPQ] , ∆d = {∆dQ} , F = {FP} ,
KPQ = aI(NAei, NBej), FP = (NAei, h̄

h
)Pn − a(NAei, v̄

h∗ + ḡh), (3.30)

P = ID(i, A), Q = ID(j, B), A, B ∈ η − ηgi
, 1 ≤ i, j ≤ ndof ,

where ID is the mapping assigning equation numbers to the nodal degrees of freedom.

In the standard finite element implementation, the global matrix K and vector F are

assembled, or can be thought of as being assembled, from the element-level contribu-

tions:

ke =
[
ke

pq

]
, fe =

{
f e

p

}
, 1 ≤ p, q ≤ nee,

ke
pq = aI(Naei, Nbej)

e, fp = (Naei, h̄
h
)P e

n
− a(Naei, v̄

h∗ + ḡh)e, (3.31)

p = ndof(a− 1) + i, q = ndof(b− 1) + j, 1 ≤ a, b ≤ nen, 1 ≤ i, j ≤ ndof ,

where nen is the number of nodes in a space-time element, nee = ndofnen is the number

of element equations (or degrees of freedom), while Na and Nb denote the restrictions

of the shape functions to the local elemental space-time domains. Similarly the su-

perscript e denotes restriction of the integral forms to the single element domain.

To demonstrate the preceding process in more detail, consider the first term in

the weak form (3.4), namely

∫
Qn

wh · ρ∂uh

∂t
dQ. (3.32)

The corresponding contribution to the Galerkin form (3.26) is

at(w̄
h, v̄h + ḡh) =

∫
Qn

ρw̄h Iuu ∂(v̄h + ḡh)

∂t
dQ, (3.33)

34

where

Iuu =


 Insd×nsd

0nsd×1

01×nsd
0


 (3.34)

is used to filter out the pressure degree of freedom. Consequently, the contributions

to aI(NAei, NBej) and a(NAei, v̄
h∗ + ḡh) in (3.29) become

aI,t(NAei, NBej) =
∫

Qe
n

ρNA
∂NB

∂t
δuu
ij dQe , A, B ∈ η − ηgi

, (3.35)

at(NAei, v̄
h∗ + ḡh) =

∫
Qe

n

ρNA
∂NB

∂t
δuu
ij (d∗

jB + gjB)dQe , A ∈ η − ηgi
, B ∈ η,

where 1 ≤ i, j ≤ ndof and δuu
ij = Iuu

ij . Hence, aI,t(NAei, NBej) = 0 when i = ndof or

j = ndof , consistent with (3.33). The contribution to ke then takes the form

ke,t
pq = aI,t(Naei, Nbej)

e . (3.36)

That is,

ke,t =




k̂e,t
11 k̂e,t

12 . . . k̂e,t
1nen

k̂e,t
21 k̂e,t

22 . . . k̂e,t
2nen

...
...

...

k̂e,t
nen1 k̂e,t

nen2 . . . k̂e,t
nennen




, (3.37)

where

k̂e,t
ab =




∫
Qe

n
ρNa

∂Nb

∂t
dQe 0 0 0

0
∫
Qe

n
ρNa

∂Nb

∂t
dQe 0 0

0 0
∫
Qe

n
ρNa

∂Nb

∂t
dQe 0

0 0 0 0




, 1 ≤ a, b ≤ nen.

(3.38)

Normally, the integration is carried out with a numerical integration rule (see e.g.

Section 3.8 of [36]). The example just discussed will be referred to in the next section.

35

3.6 Parallel Implementation

Implementation notes contained in this section follow the parallel program design

outlined in [21]. We will restrict the discussion to distributed memory Single Instruc-

tion/Multiple Data (SIMD) architectures, such as the Connection Machine range of

supercomputers. It should be noted that the latest models in this hardware family

are also capable of sustaining the Multiple Instruction/Multiple Data (MIMD) type

of control flow.

The starting point in the design of a massively parallel implementation is the de-

cision regarding distribution of the variables among the processors of the computer.

Since most of massively parallel architectures are distributed memory machines, the

placement of the data is of paramount importance and can radically affect the per-

formance of the implementation. We will assume that the architecture which is used

has a developed concept of virtual processors, so that each of the data entries which

are subject to a parallel operation may be assumed to reside on its own processor. In

reality, each physical processor takes over the duties of several virtual processors.

We will use two primary data storage modes termed ELEM and EQN. The ELEM

mode is used for storage of element level data, with one element and its nee degrees

of freedom associated with exactly one virtual processor. On the other hand the EQN

mode will hold variables at the level of the global equation system (3.30). These two

arrangements are shown schematically in Figure 3.13 for a typical subset of a finite

element mesh. The nodal data, coordinates, element-level properties and element

level matrices ke are stored in the ELEM mode. The increment vector ∆d, residual F

and certain intermediate variables are kept in the EQN form.

The mapping between the two datasets is denoted LM : ELEM 7→ EQN. Commu-

nication operation ELEM ← EQN is called a gather, while movement of the data in

the opposite direction, ELEM → EQN, is known as a scatter. The scatter is usually

coupled with a combining operation at the destination, such as addition or over-

writing. Both gather and scatter may be implemented efficiently on the Connection

Machine computers, provided they are done repeatedly with a static communication

36

ELEM EQN

c s

@
@

@
@

@
@

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

��

������������
@

@
@

@
@

@
������

������������H
HHHHHHHHHHH

@
@

@

������

��������

����
����

���� ����

����

��������

����

����

����
�
�
�
�

PN

PN

PN

PN
...

PN

PN

PN

PN

PN
...
...

PN

node︷ ︸︸ ︷
����,

node︷ ︸︸ ︷
����,

node︷ ︸︸ ︷
���� } element

����,

����,

����,

����,

����,

����,

����

����

����

����, ����, ����

�

�

�

�

�




node

@
@@I

processing node �
���

data element

Figure 3.13. Parallel implementation: element-level (left) and equation-level (right)

data storage modes.

pattern as defined by LM. In that case the communication trace may be saved the first

time communication is performed, resulting in extremely fast subsequent gathers and

scatters.

The process of solution of the linear system (3.30) which will be described in

37

Section 3.6, does not require the assembly of the global matrix K in any form. Instead,

it operates on unassembled element level matrices ke. Therefore, apart from a simple

assembly (scatter) of F from fe, the task of forming the equation system (3.30) takes

place entirely at the element level. For example in the contribution to the element level

stiffness matrix shown in (3.37) and (3.38), all quantities used to compute ke,t, i.e. ρ,

Na and ∂Nb/∂t, as well as additional variables involved in numerical integration, are

being computed and stored on the same virtual processor. Consequently, in the matrix

formation phase, no inter-processor communication is involved and the parallelism of

the operations may be fully exploited. Even more detailed description of the matrix

formation phase, including a pseudocode fragment, is found in [21].

38

